BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

10403

December, 2017

BCS-012 : BASIC MATHEMATICS

Time: 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Show that
$\cdot\left|\begin{array}{lll}b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right| \cdot 5$
(b) Let $\mathrm{A}=\left[\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right]$ and $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4 \mathrm{x}+7$.

Show that $f(A)=O_{2 \times 2}$. Use this result to find A^{5}.
(c) Find the sum up to n terms of the series

$$
0.4+0.44+0.444+\ldots
$$

(d) If $1, \omega, \omega^{2}$ are cube roots of unity, show that

$$
\begin{aligned}
& (1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\left(1+\omega^{4}\right)\left(1+\omega^{6}\right) \\
& \left(1+\omega^{8}\right)=4
\end{aligned}
$$

(e) If $y=a e^{m x}+b e^{-m x}+4$, show that

$$
\frac{d^{2} y}{d_{x^{2}}^{2}}=m^{2}(y-4)
$$

(f) A spherical balloon is being inflated at the rate of 900 cubic centimetres per second. How fast is the radius of the balloon increasing when the radius is 25 cm ?
(g) Find the value of λ for which the vectors $\vec{a}=2 \hat{i}-4 \hat{j}+3 \hat{k}, \vec{b}=\lambda \hat{i}-2 \hat{j}+\hat{k}$, $\vec{c}=2 \hat{i}+3 \hat{j}+3 \hat{k}$ are co-planar.
(h) Find the angle between the pair of lines

$$
\begin{align*}
& \frac{x-5}{2}=\frac{y-3}{3}=\frac{z-1}{-3} \text { and } \\
& \frac{x}{3}=\frac{y-1}{2}=\frac{z+5}{-3} \tag{5}
\end{align*}
$$

2. (a) Solve the following system of equations by using matrix inverse :

$$
\begin{aligned}
& 3 x+4 y+7 z=14,2 x-y+3 z=4 \\
& x+2 y-3 z=0
\end{aligned}
$$

(b) Show that $A=\left[\begin{array}{ccc}3 & 4 & -5 \\ 2 & 2 & 0 \\ 1 & 1 & 5\end{array}\right]$ is row equivalent to I_{3}.
(c) Use the principle of mathematical induction to prove that

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{1}{4} n^{2}(n+1)^{2}
$$

for every natural number n.
(d) Find the quadratic equation with real coefficients and with the pair of roots $\frac{1}{5-\sqrt{72}}, \frac{1}{5+6 \sqrt{2}}$.
3. (a) How many terms of the G.P. $\sqrt{3}, 3,3 \sqrt{3}, \ldots$. . add up to $120+40 \sqrt{3}$?
(b) If $\left(\frac{1-i}{1+i}\right)^{10}=a+i b$, then show that $a=1$ and $b=0$.
(c) Solve the equation $8 x^{3}-14 x^{2}+7 x-1=0$, the roots being in G.P.
(d) Solve the inequality $\left|\frac{x-4}{2}\right| \leq \frac{5}{12}$ and graph the solution set.
4. (a) Determine the values of x for which the following function is increasing and for which it is decreasing :

$$
f(x)=x^{4}-8 x^{3}+22 x^{2}-24 x+21
$$

(b) Show that $f(x)=1+x^{2} \ln \left(\frac{1}{x}\right)$ has a local maximum at $x=\frac{1}{\sqrt{e}},(x>0)$.
(c) Evaluate the integral

$$
\begin{equation*}
\int \frac{d x}{1+3 e^{x}+2 e^{2 x}} \tag{5}
\end{equation*}
$$

(d) Find the length of the curve $y=\frac{2}{3} \mathrm{x}^{3 / 2}$ from $(0,0)$ to $\left(1, \frac{2}{3}\right)$.
5. (a) Check the continuity of a function f at $x=0: 5$

$$
f(x)=\left\{\begin{array}{cc}
\frac{2|x|}{x} ; & x \neq 0 \\
0 ; & x=0
\end{array}\right.
$$

(b) Find the Vector and Cartesian equations of the line passing through the point ($1,-1,-2$) and parallel to the vector $3 \hat{i}-2 \hat{j}+5 \hat{k}$.
(c) Find the shortest distance between the lines

$$
\begin{aligned}
\vec{r} & =(3 \hat{i}+4 \hat{j}-2 \hat{k})+t(-\hat{i}+2 \hat{j}+\hat{k}) \text { and } \\
\vec{r} & =(\hat{i}-7 \hat{j}-2 \hat{k})+t(\hat{i}+3 \hat{j}+2 \hat{k})
\end{aligned}
$$

(d) Find the maximum value of $5 x+2 y$ subject to the constraints

$$
\begin{array}{r}
-2 x-3 y \leq-6 \\
x-2 y \leq 2 \\
6 x+4 y \leq 24 \\
-3 x+2 y \leq 3 \\
x \geq 0, y \geq 0
\end{array}
$$

