No. of Printed Pages: 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

10403

December, 2017

BCS-012 : BASIC MATHEMATICS

Time : 3 hours

Maximum Marks : 100

BCS-012

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Show that

	b+c	c + a	a + b		a	b	C		
•	c+a	a + b	b + c	= 2	b	с	a	•	5
-	a + b	b + c	c + a			a			

(b) Let $A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ and $f(x) = x^2 - 4x + 7$. Show that $f(A) = O_{2\times 2}$. Use this result to

find A^5 .

(c) Find the sum up to n terms of the series $0.4 + 0.44 + 0.444 + \dots$

BCS-012

P.T.O.

5

(d) If 1, ω , ω^2 are cube roots of unity, show that $(1 + \omega) (1 + \omega^2) (1 + \omega^3) (1 + \omega^4) (1 + \omega^6)$ $(1 + \omega^8) = 4.$

5

5

5

5

 $\mathbf{5}$

5

(e) If
$$y = ae^{mx} + be^{-mx} + 4$$
, show that

$$\frac{d^2y}{dx^2} = m^2(y-4).$$

- (f) A spherical balloon is being inflated at the rate of 900 cubic centimetres per second.
 How fast is the radius of the balloon increasing when the radius is 25 cm ?
- (g) Find the value of λ for which the vectors $\vec{a} = 2\hat{i} - 4\hat{j} + 3\hat{k}, \vec{b} = \lambda\hat{i} - 2\hat{j} + \hat{k},$ $\vec{c} = 2\hat{i} + 3\hat{j} + 3\hat{k}$ are co-planar.

(h) Find the angle between the pair of lines

$$\frac{x-5}{2} = \frac{y-3}{3} = \frac{z-1}{-3} \text{ and}$$
$$\frac{x}{3} = \frac{y-1}{2} = \frac{z+5}{-3}.$$

2. (a) Solve the following system of equations by using matrix inverse :

$$3x + 4y + 7z = 14$$
, $2x - y + 3z = 4$,
 $x + 2y - 3z = 0$

BCS-012

(b) Show that A = $\begin{bmatrix} 3 & 4 & -5 \\ 2 & 2 & 0 \\ 1 & 1 & 5 \end{bmatrix}$ is row equivalent to I₃.

(c) Use the principle of mathematical induction to prove that

$$1^3 + 2^3 + ... + n^3 = \frac{1}{4}n^2(n+1)^2$$

for every natural number n.

(d) Find the quadratic equation with real coefficients and with the pair of roots $\frac{1}{5-\sqrt{72}}, \frac{1}{5+6\sqrt{2}}.$

(a) How many terms of the G.P. $\sqrt{3}$, 3, $3\sqrt{3}$, add up to $120 + 40\sqrt{3}$?

(b) If
$$\left(\frac{1-i}{1+i}\right)^{10} = a + ib$$
, then show that $a = 1$
and $b = 0$.

(c) Solve the equation $8x^3 - 14x^2 + 7x - 1 = 0$, the roots being in G.P.

(d) Solve the inequality $\left|\frac{x-4}{2}\right| \le \frac{5}{12}$ and graph the solution set.

BCS-012

3.

P.T.O.

5

5

5

5

5

5

4. (a) Determine the values of x for which the following function is increasing and for which it is decreasing:

$$f(\mathbf{x}) = \mathbf{x}^4 - 8\mathbf{x}^3 + 22\mathbf{x}^2 - 24\mathbf{x} + 21$$

- (b) Show that $f(x) = 1 + x^2 ln(\frac{1}{x})$ has a local maximum at $x = \frac{1}{\sqrt{e}}$, (x > 0). 5
- (c) Evaluate the integral

$$\int \frac{\mathrm{dx}}{1+3\mathrm{e}^{x}+2\mathrm{e}^{2x}}.$$
 5

(d) Find the length of the curve $y = \frac{2}{3} x^{3/2}$ from (0, 0) to $\left(1, \frac{2}{3}\right)$. 5

5. (a)

Check the continuity of a function f at x = 0: 5

$$\mathbf{f}(\mathbf{x}) = \begin{cases} \frac{2|\mathbf{x}|}{\mathbf{x}}; & \mathbf{x} \neq \mathbf{0} \\ 0; & \mathbf{x} = \mathbf{0} \end{cases}$$

(b) Find the Vector and Cartesian equations of the line passing through the point (1, -1, -2) and parallel to the vector $3\hat{i} - 2\hat{j} + 5\hat{k}$.

BCS-012

5

(c) Find the shortest distance between the lines $\vec{r} = (3\hat{i} + 4\hat{j} - 2\hat{k}) + t(-\hat{i} + 2\hat{j} + \hat{k}) \text{ and}$ $\vec{r} = (\hat{i} - 7\hat{j} - 2\hat{k}) + t(\hat{i} + 3\hat{j} + 2\hat{k}).$ 5

(d) Find the maximum value of 5x + 2y subject to the constraints

$$-2x - 3y \le -6$$
$$x - 2y \le 2$$
$$6x + 4y \le 24$$
$$-3x + 2y \le 3$$
$$x \ge 0, y \ge 0$$

BCS-012