MCA (Revised)

Term-End Examination
 December, 2017

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours

Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Show that the partition problem is NP.
(b) For the functions $f(x)=2 x^{3}+3 x^{2}+1$ and $h(x)=2 x^{3}-3 x^{2}+2$, prove that : $\quad 2 \times 5=10$
(i) $\mathrm{f}(\mathrm{x})=\theta(\mathrm{h}(\mathbf{x}))$
(ii) $f(x) \neq O\left(x^{2}\right)$
(c) Show that the state entry problem is undecidable.
(d) If $S=\{a, a a, a a\}, T=\{b b, b b b\}$, then prove that $\mathbf{S T}=$ (abb, abbb, aabb, aabbb, aaabb, aaabbb].
(e) Differentiate between NP-Complete and NP-Hard problems. Give one example for each.
(f) Analyze the time complexity of binary search in worst case.
(g) Construct a Deterministic Finite Automata (DFA) over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, which accepts all strings over Σ that start and end with the same letter.
2. (a) Explain Strassen's Matrix Multiplication Algorithm and apply the same to multiply the following two matrices :

$$
A=\left[\begin{array}{cc}
5 & 6 \\
-4 & 3
\end{array}\right], B=\left[\begin{array}{cc}
-7 & 6 \\
5 & 9
\end{array}\right]
$$

(b) Solve the following $0 / 1$ knapsack problem using dynamic programming :

Number of objects $\mathrm{n}=6$
Weights of objects $w_{i}=(1,2,5,6,8,10)$
Profit of objects $p_{i}=(1,6,18,22,30,43)$
Capacity of knapsack, $M=12$
3. (a) Multiply the following two numbers using Karatsuba's method :

1026732 and 732912
(b) Define Context-Free Grammar (CFG). Find CFG for the language

$$
\begin{equation*}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathbf{b}^{\mathbf{m}} \mathbf{c}^{\mathrm{n}} \mid \mathrm{m}, \mathrm{n} \geq 1\right\} . \tag{5}
\end{equation*}
$$

(c) Write Kruskal's Algorithm and apply the same to find a minimum spanning tree for the following graph :

(d) Solve the following recurrence relation :

$$
t_{n}=2 t_{n-1}+1, \text { such that } t_{0}=1
$$

4. (a) Write short notes on any three of the following :
(i) Chomsky's Classification of Grammar
(ii) Push-Down Automata (PDA)
(iii) Depth-First Search (DFS)
(iv) Asymptotic Notation (O, Ω and θ)
(b) Design a Push Down Automata that accepts the language of odd palindromes.
5. (a) Design a Turing Machine that accepts the following language :

$$
L=\left\{a^{n} b^{n} \mid n \geq 1\right\}
$$

(b) Write an algorithm for Quick Sort. Sort the following sequence of numbers using Quick Sort :

$$
15,10,13,9,12,7
$$

Analyze the time complexity of Quick Sort in best and worst cases. $6+6=12$

