BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination
04752

June, 2019

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks : 100
Note:

- (i) Use of calculator is allowed during examination.
(ii) Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5.

1. (a) Find the sum of two floating-point numbers

$$
x=0.6239 \times 10^{6} \text { and } y=0.5163 \times 10^{4} .
$$

(b) Find the product of x and y where the value of x and y are given in part (a) of this question.
(c) What is 'underflow'? Give an example of multiplication due to which underflow occurs.
(d) Write the following system of linear equations in matrix form :

$$
\begin{aligned}
3 x+5 y+8 z & =0 \\
3 y+2 z & =7 \\
2 x-3 z & =-6
\end{aligned}
$$

(e) Solve the following system of linear equations using the Gauss elimination method :

$$
\begin{aligned}
& 13 x-7 y=2 \\
& 5 x+3 y=15
\end{aligned}
$$

(f) Find an interval in which the following equation has a root :

$$
2 x^{2}-11 x+14=0
$$

(g) Show two iterations of Newton-Raphson method for finding approximate root of the equation

$$
x^{2}+x-6=0 \text { starting with } x_{0}=1
$$

(h) Write the notation and formula for the following operators:
(i) Central difference operator
(ii) Shift operator
(iii) Forward difference operator
(i) Write ∇ and δ in terms of E.
(j) Define the term interpolation with the help of an example. State the Newton's backward difference formula for interpolation. $\quad 2+2=4$
(k) Construct a difference table for the following data :

x	4	6	8	10
$f(x)$	9	15	29	31

(l) From the Newton's backward difference formula asked in part (j), derive a. rule/formula for finding the derivative of a function $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{x}_{0}$.
(m) State trapezoidal rule for finding the approximate value of integral

$$
\int_{a}^{b} f(x) d x
$$

Also show it geometrically.
(n) Define the following terms and give one example for each of the following in the context of differential equations :
(i) Order
(ii) Degree
(iii) Initial conditions
(iv) Boundary conditions
2. (a) Assuming an 8-decimal digit floating point representation (with 4 digits for mantissa, two digits for exponent and one each for sign of mantissa and exponent), represent the following numbers in normalised floating point form (use chopping, if required).
(i) 23563255
(ii) $-63 \cdot 27832$
(iii) -0.0000235
(b) For each of the three numbers in Q.No. 2(a), find the relative error in its normalised floating point representation.
(c) Obtain the approximate value of smallest positive root of the equation

$$
x^{3}+4 x-12=0
$$

by using three iterations of bisection method.
(d) Find the Maclaurin's series of $f(x)=e^{x}$, around $x_{\text {. }}=0$. (Please note $\frac{d}{d x} e^{x}=e^{x}$)
Calculate the approximate value of e using first four terms of this series.
3. (a) Solve the following system of linear equations with pivotal condensation Gaussian elimination method : 10

$$
\begin{aligned}
& 2 x+3 y-z=11 \\
& x-5 y+7 z=0 \\
& 3 x-y-3 z=4
\end{aligned}
$$

(b) Solve the following system of linear equations using Gauss-Jacobi iterative method. Perform only three iterations.

$$
\begin{aligned}
& 5 x-7 y+3 z=15 \\
& x-5 x-2 z=4 \\
& 3 x+2 y+z=2
\end{aligned}
$$

Take initial estimates as $x=0, y=0$ and $\mathrm{z}=0$.
(c) Define the following with the help of an example:
(i) Ill conditioned problem
(ii) Rounding off errors
(iii) Algebraic equations
(iv) Transcendental equations
4. (a) Find the Newton's forward-difference interpolating polynomial for the following data :

x	1	2	3	4	5	6
$f(x)$	12	22	44	84	148	242

Hence, obtain the value of $f(x)$ at $x=1.5$ and $x=2 \cdot 5$.
(b) Estimate the missing term (represented by '?') in the following data, if it represents a valid interpolating polynomial of degree 3 .

x	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	5	24	$?$	128	225

(c) Given the following data for interpolation :

x	0	1	5	15
$f(x)$	20	60	120	200

To find the value of $f(x)$ at $x=2$, which of the following methods will be used by you?

- Bessel's interpolation formula
- Newton's FD formula
- Lagrange's interpolation method

Give reasons in support of your answer.
(d) What is inverse interpolation? Explain with the help of an example.
5. Attempt any two of the following parts : $2 \times 10=20$
(a) Find the approximate value of the integral

$$
I=\int_{0.2}^{1.0} \frac{d x}{\sqrt{1+x^{2}}}
$$

by Simpson's $\frac{1}{3}$ rd rule dividing the interval [$0 \cdot 2,1 \cdot 0$] to 4 equal sub-intervals. Compute up to four places of decimal only.
(b) Find the value of $f^{\prime}(x)$ or y^{\prime} and $f^{\prime \prime}(x)$ or $y^{\prime \prime}$ at $x=1.25$ for the values of $y=x^{2 / 3}$ given in the following table :

x	1.0	1.5	2.0	2.5	3.0
$y=f(x)=x^{2 / 3}$	1	1.310	1.587	1.842	2.080

(c) Solve the following differential equation using Euler's method :

$$
y^{\prime}=1-2 x y \text {, assume that } y(0)=1 .
$$

Find the solution in the interval $[0,0.8]$ with $\mathrm{h}=0 \cdot 2$.

