No. of Printed Pages: 3

BCS-042

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

03931

June, 2017

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : 2 hours

Maximum Marks : 50

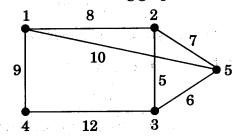
- **Note :** Question no. 1 is **compulsory**. Answer any **three** questions from the rest.
- 1. (a) Write the linear search algorithm and analyse its time complexity in worst case.
 - (b) Arrange the following functions in increasing growth order :
 - (i) $O(n^3)$
 - (ii) $O(2^n)$
 - (iii) $O(\log n)$
 - (iv) $O(\sqrt{n})$
 - (c) Write the recursive algorithm to calculate x^n using Divide and Conquer.

BCS-042

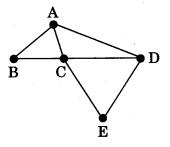
1

P.T.O.

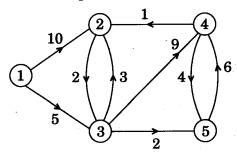
4


4

2


(d) What is Minimum Cost Spanning Tree (MCST) ? Apply Prim's algorithm to find MCST for the following graph :

4


3

- (e) Show that the worst case time complexity of Quick sort is $O(n^2)$, where n is the size of array elements.
- (f) Create adjacency list for the following graph: 3

2. (a) Apply Dijkstra's algorithm to find the single source shortest path for the following graph : 5

2

BCS-042

(b) Apply the Merge sort algorithm to sort the following list :

15, 8, 6, 12, 20, 7, 18, 5

3. (a) What is recurrence relation ? Draw a recurrence tree for recurrence

$$T(n) = 3T\left(\frac{n}{2}\right) + n.$$

- (b) Write the Breadth First search algorithm and calculate its time complexity.
- 4. (a) Find the time complexity of the following code :

for
$$(i = 1; i < = n; i ++)$$

ł

if (A[i] > B[i]) print A[i];

(b) Find the optimal solution to the fractional knapsack problem for n = 5,
M(capacity of knapsack) = 10 and (p₁, p₂, p₃, p₄, p₅) = (12, 32, 40, 30, 50) (w₁, w₂, w₃, w₄, w₅) = (4, 8, 2, 6, 1)

5. Explain the following terms with examples :

- (a) Space Complexity
- (b) Asymptotic Notation
- (c) Binary Search
- (d) Master Method for Solving Recurrence

BCS-042

3

6,000

5

5

5

5

10