

58

Basics of Computer

Software

UNIT 3 CONCEPT IN PROGRAMMING

LANGUAGE

Structure Page No.

3.0 Introduction 58

3.1 Objectives 58

3.2 Problem, Algorithm, Program and Programming Language 59

3.3 Concept of a Programming Language 65

3.4 Elements of Programming Language 67

 3.4.1 Variables, Constants, Data Type, Array and Expression 67

 3.4.2 Conditional and Looping Statement 72

 3.4.3 Subroutine and Function 73

3.5 Editor, Assembler, Interpreter & Compiler 76

3.6 Summary 78

3.7 Answers to Check Your Progress 80

3.8 Further Readings

3.0 INTRODUCTION

A Programming Language is used to design and describe a set of instructions and

computations to be executed by a computer. To do programming, one should have

knowledge of i) a particular programming language ii) algorithm to solve the

problem. An algorithm is finite number of steps, which perform some

computation on the input and produce the desired output in a finite amount of

time. Once an algorithm is chosen, the next step for a solution using a computer

would be to write a program using the algorithm. A program is defined as a

collection of Statements or Sentences written in a particular programming

language. Further, to obtain the output from a Program, it is required to be

compiled or interpreted so that the computer can understand it.

3.1 OBJECTIVES

After going through this unit, you will be able to :

 need for Programming;

 flow chart and Example Program;

 elements of Programming Languages such as variable, constant, data type,

arrays and expression etc.;

 describe looping and decisions; and

 differentiate between Assembler, Compiler and Interpreter.

59

Concept in Programming

Language 3.2 PROBLEM, ALGORITHM, PROGRAM AND

PROGRAMMING LANGUAGE

A Problem is to carry out a particular task. For solving the problem, some input

has to be given to the system. The system will process or manipulate the input and

produce the desired output. An algorithm describes the steps required to solve a

problem. Once an algorithm is obtained for solving a problem, a Program has to

be written which a computer can execute so as to accomplish the given task,

thereby solving the problem at hand. The program can be in any suitable

programming language and is not dependent on the algorithm in any way.

Algorithm: Once a problem has been defined precisely, a procedure or process

must be designed to produce the required output from the given input. Since a

computer is a machine that does not possess problem-solving judgmental

capabilities, this procedure must be designed as a sequence of simple and

unambiguous steps. Such a procedure is known as an algorithm.

The steps that comprise an algorithm must be organized in a logical, clear manner

so that the program that implements this algorithm is similarly well structured.

Number of steps in the algorithm should be finite, they should be executed in

finite amount of time and they should give the desired output. Algorithms are

designed using three basic methods of control:

a) Sequential : Steps are performed in a strictly sequential manner, each step

being executed exactly once.

b) Decision/Selection : One of several alternative actions is selected and

executed.

c) Repetition : One or more steps is performed repeatedly.

Any algorithm can be constructed using basic methods of control.

Programs to implement algorithms on the computer must be written in a

language that the computer can understand. It is fruitful, therefore, to describe

algorithms in a language that resembles the language used to write computer

programs. This is called pseudo code. It is not a programming language with a

rigid syntax, but is similar to one. The idea is that it should be easy to write a

program by looking at the pseudo code..

Let us take few problems to illustrate how to express the solution to a problem in

the form of an algorithm. We will also see how algorithm can be

diagrammatically represented using flow chart, and also how a program can be

written based on the algorithm.

For providing a solution to any problem some input from the user is required. In

the following examples the number n that is expected from the user should be an

60

Basics of Computer

Software

integer. In the program, it will be declared of the required type only, referred as

data type of the variable. A Detailed description of variable and data type is given

in a later section.

Flowcharting: A Flowchart is a graphical representation of an algorithm. It can

be compared to the blueprint of a building. Just as a building contractor refers to a

blueprint for the construction of a building, similarly a programmer refers to a

flowchart for writing the program which describes what operations are to be

carried out and in what sequence to solve a problem. Flowcharts are usually

drawn using some standard symbols. The Basic flowchart symbols are as below:

Terminal Start, End

Computational or

processing

Process

Input/Output Operation Input-Output

Decision making or

Branching

Decision

Flow Lines Flow Direction

Joining of two parts Connector

The number n is expected to be an integer.

Example 1

Problem statement: To find out whether a given number is even or odd.

Algorithm:

Step 1 Start

Step 2 INPUT the number n

Step 3 Find the remainder on dividing the given number by 2

 if (remainder = 0) then

 print “number is even”

 else

 print “number is odd”

Step 4 End

Representing this algorithm through flowchart helps in easier and better

understanding of the algorithm :

61

Concept in Programming

Language

The program to implement this so that it can be run on a computer can be written

in any of the known programming languages. For example, here C has been used

as the Programming language for writing the program:

#include<stdio.h> /* including header file that has definition of inbuilt functions

*/

void main()

{ /* To mark beginning of block */

 int n; /* variable declaration */

 printf(“Enter the number”); /* predefined output function in header file to

display the message on standard output device */

 scanf(“%d”,&n); /* predefined input function for taking an input from the user

*/

 if (n %2 ==0) /* if else condition to check a expression is true or false and

branch accordingly as per syntax of C programming */

 {

 printf(“Number %d is even”,n);

 }

 else

 {

 printf(“Number %d is odd”,n)

 }

} /* to mark the end of block */

62

Basics of Computer

Software

Example 2

Problem: To find the product of first n natural numbers.

Step 1 Start

Step 2 Input number n

Step 3 Initialize product=1

Step 4 Initialize the counter, i=1

Step 5 Compute product=product * i

Step 6 Increment counter i by 1 i.e i=i+1

Step 7 Check counter <= n if yes go to step 5

Step 8 Print Product of first n natural numbers as product

Step 9 End

We now express this algorithm as a flowchart for better understanding of the

algorithm

Here is the C program corresponding to the above algorithm:

#include<stdio.h>

void main()

63

Concept in Programming

Language
{

 int n,i;

 int prod=1;

 printf(“Enter number n :”);

 scanf(“%d”,&n);

 for(i=1;i<=n;i++) /* For loop construct for repeating a set of statement n

number of times */

 {

 prod=prod * i;

 }

printf(“Product of first %d natural numbers is = %d”,n,prod);

}

Example 3

Problem: To find the sum and average of marks obtained by 20 students in some

subject of a course.

Algorithm:

Step 1 Start

Step 2 Initialize an array s for 20 students marks i.e s[20]

Step 3 initialize sum=0

Step 4 initialize counter=0

Step 5 Compute sum=sum+s[counter]

Step 6 increment counter =counter+1

Step 7 check counter <20

Step 8 if yes goes to step 5

Step 9 avg=(sum/20)

Step 10 Print sum and average

Step 10 End

64

Basics of Computer

Software

Here is the corresponding C program:

#include <stdio.h>

void main()

{

 int i, sum; /* declaring variables */

 int s[20]; /* declaring array to refer set of memory locations of same data

type with one name */

 float avg;

 sum=0; /* assignment statement */

 printf(“Enter marks for 20 students”);

 for(i=0;i<20;i++)

 { printf(“%d =”,i+1);

 scanf(“%d”,&s[i]);

 }

 i=0;

 while(i<20) /* while loop construct to repeat set of statement till the condition

is true */

 {

 sum=sum+s[i]; /* arithmetic statement for addition */

65

Concept in Programming

Language
 i++; /* increment statement */

 }

 avg=sum/20;

 printf(“Sum of marks for 20 students:= %d”,sum);

 printf(“Average marks of 20 students:=%.2f”,avg);

}

Check Your Progress 1

1) Write an algorithm for solving the following problems:

a) To calculate the area of a rectangle.

…………………………………………………………………………

…………………………………………………………………………

b) To find the sum of the first n natural numbers

…………………………………………………………………………

…………………………………………………………………………

2) Draw a flowchart for a) and b) in Question 1

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3.3 CONCEPT OF PROGRAMMING LANGUAGE

In order to communicate with other human beings, one needs some language or a

medium. In the same way for solving problems, a programming language is

required in order to communicate with the computer. A Programming Language is

used to design and describe a set of instructions/actions for the computation that

we wish to be executed by the computer.

First an algorithm is designed which solves the problem in question. In the next

step, the algorithm is expressed in the form of a program. For this one should

have a sound knowledge of some programming language. A program written in a

particular Programming Language can control the behavior of a computer and

perform a designated task to generate the desired output for any given input.

Program and Programming Language : A Program is defined as a collection of

statements/ instructions that enable the computer to solve a problem. The process

of writing a program is called programming. Statements in a program should be

well formed sentences. Each Programming Language has some basic building

blocks called the primitive building blocks. These blocks are defined by basic

components that have an associate Syntax and Semantics. Syntax provides

structure and semantic provides meaning to it. Different computer programming

languages have different advantages and disadvantages to their use. Hence

different application domains based on their requirement and functionality may

choose any one of the available programming languages suitable for the task.

66

Basics of Computer

Software

Syntax provides the structure and how to formulate the phrase or sentence w.r.t

grammar of the language. It tells us about which composition is allowed from the

character set of the language. Each sentence must be a well formed sentence

according to the grammar of the language. The grammar is expressed in a Number

of rules that will be finite and these allow the formulation of any number of

sentences. A language is defined in the form a quadruplet L(T,N,P,S) where T is

set of terminals, N is a set of non terminals, P is set of productions or rules and S

is the start symbol. For any language we must have an alphabet/character set,

operators and rules. To form a grammar w.r.t a language rules need to be formed.

The basic structure of rule is LHS and RHS with some set of terminal and non

terminal symbol.

Syntax comprises grammar and vocabulary whereas syntactic analysis is known

as parsing. Semantics provides the meaning for the formulated /composed phrase

or word or sentence. Semantic function can be incorporated inside the logic of a

compiler or interpreter which evaluates ordering of statements for execution.

S-> A

A->Ab | b i.e any word with sequence of any number of occurrence of character b

Start symbol:

Here S is start symbol. Any sentence will start with start symbol only.

In respect of BNF notation it is as follows:

L(T,N,P,S)

T={b}

N={A}

P={S->A,A->Ab}

S=Start sybmol

Example grammar:

Program: statement

Statement: stmt| stmt

Stmt: var=expression

Var:a|b

Expression: term +term | term-term

Term: var/const

e.g x=y+2

Similarly

Sentence: subject,verb,object

Subject: noun/article

 e.g Ram ate biscuits.

67

Concept in Programming

Language
Here each symbol on the left is described in terms of its components. Thus a

program consists of statements, which are of the form of an assignment of a

variable to an expression, and so on.

Any number of sentences can be formed with the help of a grammar defined for a

language. The grammar should be unambiguous. otherwise during syntactic

analysis at some point of time it can have more than one meaning.

3.4 ELEMENTS OF PROGRAMMING LANGUAGE

Learning a programming language requires understanding of concepts such as

representation of different types of data in the computer, the various methods of

expressing mathematical and logical relationships among data elements and the

methods for controlling the sequence in which operations can be executed for

inputting the data, processing it and generating the output data.

3.4.1 Variables, Constants, Data type, Array and Expression

These are the smallest components of a programming language.

For writing a program, one must know how to use the internal memory of a

computer. A Computer memory is divided into several locations where each

location has its own address. Memory organization can be represented

diagrammatically as below:

Cell1

Cell2

Cell3

Cell4

CellN

Each location or cell can hold some information. In order to store, retrieve or

manipulate data from a specific memory location, we must have some identifier

for a particular location. .

Variable: As referencing memory by its physical address is very tedious, variable

names are used. A variable is a symbolic name given to a memory location. Once

a variable is assigned to a memory location, the programmer can refer to that

location by variable name instead of its address. Variable is the connection

between a name and a value.

It is composed of a name, attribute, reference and a value. Attribute means the

type of value a variable can hold.

68

Basics of Computer

Software

For example the following programming code in C declares variables a & b.

 int a,b;

 char c;

In the above declaration, a & b are the variable name, which refer to a memory

location where integer values can be stored. Instead of address of the memory

location, variable names a and b will be used to refer to a memory location in

order to store or retriever update its value.

Similarly, c is a variable name given to a memory location where a character

value can be stored. Further c will be used to refer to the memory location in

order to store or retrieve or update its value.

Constant : In contrast to a variable, which is used as identifier for a value and

which can change, constants are identifiers that are used for values, which cannot

be changed. In other words constants are symbols used to refer to quantities which

do not change throughout the life of a program. No assignment can be done to a

constant.

A numeric constant stands for a number. This number can be an integer, a

decimal fraction, or a number in scientific (exponential) notation. Some of the

operations which can be performed with numeric constants are addition,

subtraction, multiplication, division and comparison.

A string constant consists of a sequence of characters enclosed in double/single

quote marks. Chopping off some of the characters from the beginning or end,

adding another string at the end (concatenation), copying are some of the

operations that performed on the string constants. All these operations can be

done on variables also.

For example in the C programming language

-integer constant is declared as:

const int a=2; /* the value of a cannot be changed throughout the program*/

-string constant is declared as:

char const *str; /* str ,string can not be altered by string library functions*/

Data Type: Anything that is processed by a computer is called data. There are

different types of data that can be given to the computer for processing. A data

type is a classification identifying the typeof data. It determines the

 Possible values for that type,

 Operations that can be performed on values of that type,

 The way values of that type can be stored in memory,

69

Concept in Programming

Language
In each programming language there are some primitive data types. For example

in the C programming language they are: Please note that these sizes can be

compiler or machine dependent in the case of this language. For other languages

such as Java, the sizes are defined by the language itself.

 int, both signed and unsigned integers, 2 bytes in size.

 float, floating point numbers, up to 4 bytes in size.

 double, floating point number with double precision. These are organized

in 8 bytes (64 bits)

 char, character type size of 1 byte (8 bits) It is used to form the strings i.e

sequence of characters.

Array : In programming, when large amount of related data needs to be

processed and each data element is stored with different a variable name, it

becomes very difficult to manage and manipulate. To deal with such situations,

the concept of array is used.

An array is a set of elements of same data type that can be individually referenced

by an index. Usually these are placed in contiguous memory locations. Generally

two types of array are used:

 One dimensional array

 Two dimensional array

One dimensional array: A one-dimensional array is a structured collection of

elements that can be accessed individually by specifying the position of a

component with index/ subscript value. The index would let us refer to the

corresponding value. value at that .

Like a regular variable, an array must be declared before it is used. A typical

declaration for an array in C++ is:

type name [elements];

where type is a valid data type (like int, float...), name is a valid identifier or

variable name and the elements field (which is always enclosed in square brackets

[]), specifies how many of these elements the array will contain.

Therefore, in order to declare an array named as marks, that will store marks for 5

students,

70

Basics of Computer

Software

 int marks[5];

 marks [0] marks[1] marks[2] marks[3] marks[4]

50 70 80 90 63

Two dimensional Arrays : A two-dimensional array is like a table, with a

defined number of rows, where each row has a defined number of columns. In

some instances we need to have such an array of arrays. It will have two

dimensions and data is represented in the form of rows and columns.

Type name [elements] [elements];

For example int a [3] [3]; /* lets one dimension depict location and other

dimension represent sales in a day or a week or a month*/

Column1 Column 2 Column 3

Row1 a[0][0] a[0][1] a[0][2]

Row2 a[1][0] a[1][1] a[1][2]

Row3 a[2][0] a[2][1] a[2][2]

Expression : An expression is a combination of variables, constants and operators

written according to the syntax of the programming language. In the C

programming language every expression evaluates to a value i.e., every

expression results in some value of a certain type that can be assigned to a

variable. Every computer language specifies how operators are evaluated in a

given expression. An expression may contain

i) arithmetic operator:

ii) relational operator

iii) logical operator

Assignment : It is composed of variable name, an assignment operator of the

language and a value or variable or some expression as per composition allowed

based on rules defined in grammar.

e.g temp=5;

 temp=temp+1;

This means to add 1 to the current value of the variable temp and make that the

new contents of the variable temp

temp = a+b ;

Arithmetic : These types of expressions consist of operators, operands or some

expression. The following is the list of arithmetic operator.

+(addition),

-(subtraction),

71

Concept in Programming

Language
*(Multiplication),

/(Division),

% (modulo),

++(increment by 1),

--(decrement by 1)

Here are some examples of arithmetic expressions.

e.g. x=y+z; /* addition of y and z will be stored in x */

 i++; /* i will be incremented by 1 i.e i=i+1 */

 y=x%2; /* remainder after x divided by 2 will be stored in y */

Logical, relational and equality : these types of expression result in a Boolean

representation i.e. each expression will result in either True or False. It is

composed of operands and relational/logical/equality operator.

The following is the list of operators in the C programming language

== (equal to)

!= (Not equal to)

< (less than)

<= (less than equal to)

> (greater than)

>=(greater than equal to)

&& (logical AND)

|| (logical OR)

! (logical NOT)

Relational expressions result in one of the truth value either TRUE or FALSE.

They are capable of comparing only two values separated by any valid relational

operator.

e.g.

Let x=1, y=3

x==1 /* evaluates to true as x has value 1 */

x!=y /* evaluates to false */

x<y /* evaluates to true */

 (x<2) && (y> 5) /* evaluates to true */

Bit Wise: Bitwise operators modify variables considering the bit patterns that

represent the values they store.

 & AND (Binary operator)

 | inclusive OR (OR)

 ^ exclusive OR (XOR)

 << shift left.

 >> shift right.

 ~ one's complement

72

Basics of Computer

Software

e.g. let a=2 (0000 0010),b=5(0000 0101)

 c=a&b; (0000 0000) /* c=0*/

3.4.2 Conditional and Looping Statement

Conditional statement: An If statement is composed of three parts. The first part

should be keyword w.r.t language to convey to the computer that it is if statement.

And a Boolean expression. The second and thirds part can be a statement or group

of statements as defined in rules of grammar of language.

Generally, an if statement is evaluated and executed in the following sequence:

first it evaluates the boolean expression. If the expression is true, the statements in

the second part are executed. Otherwise if it is false, the statements in the third

part are executed. The third part is optional; if it is absent and the expression is

false, then the program control simply moves on to the next statement in the

sequence.

For example,

if (n %2 ==0)

 {

 printf(“Number %d is even”,n);

 }

else

 {

 printf(“Number %d is odd”,n)

 }

Looping Statement: The purpose of a loop structure is to repeat certain tasks

until some condition is satisfied. Several variations of a loop structure are

available in each programming language to handle different situations.

A program loop consists of two segments, one is the body of the loop and the

other is the control statement. The control statement tests certain conditions and

then directs the repeated execution of the statements contained in the body of the

loop. The test may be either to determine whether the loop has repeated the

specified number of times or to determine whether the particular condition has

been met.

Thus a loop consists of :

 Initial condition

 Execution of set of statements inside the loop

 Test the condition

 Again execute the statements if the condition is met else go to the next

statement in the sequence

73

Concept in Programming

Language
There are three variants of looping statements in the C programming language

are:

 For loop

 While loop

 Do while loop

In this brief introductory unit, we will not go into the details of the distinctions

between these three types of loops.

e.g 1

for(i=0;i<20;i++)

 { printf(“%d =”,i+1);

 scanf(“%d”,&s[i]);

 }

e.g 2

 i=0;

 while(i<20)

 {

 sum=sum+s[i];

 i++; /* increment counter */

 }

Basic structure or keywords may vary in different languages. Also loop structure

may be structured or not as it might not have control variables. Most of the

languages do have control variables in their loop structure.

3.4.3 Subroutine and Functions

In a program, it is often necessary to repeat a statement or group of statements at

several points to accomplish a particular task. Repeating the same statement in a

program each time makes a program lengthy and reduces readability. These

problems could be sorted out if the necessary statements could be written once

and then referred to each time they are needed. This is the purpose of a

subprogram. Basically there are two different types of subprograms, called

functions and subroutines.

Making subprograms allows tackling small pieces of a problem individually.

Once each piece is working correctly then the pieces are integrated together to

create the complete solution of the problem. To implement functions and

subroutines, we require writing the main program that references all of the

subprograms in the desired order and also writing the subprograms. This can be

done in any order that is convenient.

The following steps take place during the execution of subprograms:

74

Basics of Computer

Software

1) Temporarily halt the execution of the calling program i.e main program.

2) Execute subprogram.

3) Resume execution of the calling program at the point immediately following

the call of the subprogram.

Subroutine : A subroutine is a type of subprogram, a piece of code within a

larger program that performs a specific task and is relatively independent of the

remaining code.

It is also called a procedure, routine or a method.

A subroutine has no value associated with its name. All outputs are defined in

terms of arguments; there may be any number of outputs.

In most cases, a subroutine needs some information about the circumstances in

which it has been called. A procedure that performs repeated or shared tasks uses

different information for each call. This information consists of variables,

constants, and expressions that you pass to the procedure when you call it.

A parameter represents a value that the procedure expects you to supply when you

call it. You can create a procedure with no parameters, one parameter, or more

than one. The part of the procedure definition that specifies the parameters is

called the parameter list.

An argument represents the value you supply to a procedure parameter when you

call the procedure. The calling code supplies the arguments when it calls the

procedure. The part of the procedure call that specifies the arguments is called the

argument list. For example here is a subroutine to find the sum of three numbers

SUBROUTINE sub1(A,B,C, SUM)

 REAL A,B,C,SUM

 SUM = A + B + C

 RETURN

END

The subroutine sub1 in the main program will be invoked as follows

CALL sub1(A,B,C, SUM)

Function : The purpose of a function is to take in a number of values or

arguments, do some calculations with those arguments and then return a single

result.

Each language has different rules to define a function. In the C programming

language the basic block for function is given as:

75

Concept in Programming

Language
return value function name (argument list)

{

statement;

}

Functions can be called from the main program or from anywhere else, even from

within itself. Program control will transfer to function definition statement as soon

they are called and then return back to next statement immediately after the

calling point.

e.g

#include<stdio.h>

void main()

{

int x, y;

printf(“Enter number”);

scanf(“%d”,&y);

x=funname(y);

if(x==1)

printf(“Number %d is even”,y);

else

printf(“Number %d is odd”,y);

}

int funname(int a)

{

if((a%2)==0)

return 1;

else

return 0;

}

Library function: These are the functions supplied with the programming

language. The code or definition of library functions does not have to be written

in a user program while writing it. Coding or definition of these function are

defined in header or library files which are required to be included in program.

e.g.

#include<stdio.h>

printf(),scanf() etc. are functions defined in stdio.h header file.

Similarly every programming language has a set of library or header files.

76

Basics of Computer

Software

3.5 EDITOR, ASSEMBLER, INTERPRETOR & COMPILER

To write a program in any of the programming languages requires an editor.

This is a program that is used to create text files. While saving the program,

filename and extension as per programming language is required to be given e.g

in C programming language f1.c, in C++ f1.cpp or f1.C, in Java f1.java etc. The

extension may also depend on the conventions of the operating system used, for

instance, in unix the extension for a C++ program is .C while for Windows it

would be .cpp.

There are different types of editors. Some of the programming languages have

some specific built in editors.

 Source pgm executable pgm

A Programming Language is different from machine language, which is

understood by a computer in the sense that it can be directly executed. Hence a

program in any higher level programming language like C requires a translation

process that can translate the source program into machine code so that it can be

executed by the computer.

As you may already know from a previous unit, programming languages can be

low level languages or high level languages.

Assembly language is a low level programming language similar to machine

language, but far easier to write and understand because machine language binary

instructions and operands are replaced by mnemonics that are comprehensible to

humans. Just As a program written in programming language requires a translator

to translate the source program in machine code, a program written in assembly

language uses the utility named as assembler for translation purpose. Assembly

language is the most basic programming language available for any processor.

With assembly language, a programmer works only with operations implemented

directly on the physical CPU. Assembly language lacks high-level conveniences

such as variables and functions, and it is not portable between various families of

processors.

 Machine code

High level programming languages provide:

 Good readability

 Portability

Editor
Compiler /

Interpreter

Assembly

language

program

Assembler

77

Concept in Programming

Language
 Easy debugging

 Easy software development

Hence Programming languages translators are broadly divided into two

categories:

 Compilers

 Interpreters

Compiled Language : An additional program called a compiler translates a

program written in a programming language; into a new file that does not require

any other program to execute itself, such a file is called an executable.

e.g. C, C++, Pascal are languages that are typically compiled

Compilers produce better optimized code that generally runs faster and compiled

code is self-sufficient and can be run on their intended platforms without the

compiler present.

Interpreter : An interpreter is a program that translates each statement in the

programming language into machine code and runs it. Such an arrangement

means that to run the program one must always have the interpreter available.

e.g Basic , Prolog, Perl are languages that are typically interpreted.

Programs in any language can be interpreted or compiled. So there are basic

compilers available as well. Compiled code runs faster and does not need the

compiler at run time, whereas interpreted code is slower and needs the interpreter

every time the program has to be run.

Check Your Progress 2

1) What is the need of programming language?

 …………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

2) What is the purpose of looping statement s in a programming language?

 …………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

3) What are basic operators in any of the programming language?

 …………………………………………………………………………………..

…………………………………………………………………………………..

78

Basics of Computer

Software

4) What is the purpose of using an array in a programming language?

…………………………………………………………………………………..

…………………………………………………………………………………..

…………………………………………………………………………………..

3.6 SUMMARY

This unit helps in understanding the requirement of programming languages.

Broad classification of programming languages is discussed. Any programming

language allows one to translate an algorithm to a computer program for solving

the given problem.

Basic constructs of programming languages are described which include

description of syntax and semantics. Various control structures for any

programming language like conditional statements, arrays, loops and subroutine

are discussed. To execute a program in programming language, firstly we should

have a program then it should be in the form that is understood by computer.

Hence editor is required to write a program. Then program requires compiler or

interpreter to translate it into machine code so that it can be understood by

computer.

3.7 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress 1

1. a) Algorithm to calculate area of a rectangle

Step 1: Read length of the rectangle.

Step 2: Read breadth of the rectangle.

Step 3: Calculate Area = length X breadth

Step 4: Print area.

Step 5: END

1. b) Algorithm to find sum of the first n numbers

Step 1: read the number (n)

Step 2: initialize fact=1,i=1

Step 3: repeat 4,5 until i<=n

Step 4: fact=fact+i

Step 5: increment i by 1 i.e i=i+1

Step 10: Print “Sum of n given numbers is”, n , fact

Step 11: END

79

Concept in Programming

Language
2. (a) Flowchart to compute area of a rectangle:

(b) Flowchart to find sum of first n numbers:

start

Input n

Initialize

fact=1 , i=1

Is i<=n ?

fact=fact+ i

i=i+1

Yes

No

print suml, fact

End

80

Basics of Computer

Software

Check Your Progress 2

1. To solve any problem computer has to be given instructions. Instructions

cannot be given in any natural language, which we use (like English, Hindi

etc). So it is required to have a programming language to write the

program to solve the given problem with the help of a computer.

2. If in a program, a set of statements has to be executed more than once at a

particular place, then looping statements are used.

3. The operators in any programming language are broadly classified into the

following types:

a) Arithmetic operators: Operators, which are used to perform

arithmetic operations such as addition, subtraction, multiplication,

division etc.

b) Logical Operators: Operators under this category are AND, OR,

NOT.

c) Relational Operators : >,<,=, not = ,<=, >= these are the relational

operators.

4. In programming, when large amount of related data need to be processed

and each data element is stored with different variable name, it becomes

very difficult to manage and manipulate. To deal with such situations, the

concept of array is used. Array provides a simple & efficient method to

refer, retrieve & manipulate a collection of similar data by a single name.

3.8 FURTHER READINGS

Terrence W. Pratt , Marvin V. Zelkowitz “Programming Languages Design and

Implementation”, Fourth Edition, 2002, PHI.

Ellis Horowitz “Fundamentals of Programming Languages”, Second Edition,

2000 Galgotia.

R.G Dromey “How to solve by computer”, PHI.

