

5

Software Evolution
UNIT 1 SOFTWARE EVOLUTION

Structure Page No.

1.0 Introduction 5

1.1 Objectives 6

1.2 What is Software ? 6

1.3 Software Evolution 7

1.3.1 Evolution of Software Architecture 8

1.3.1.1 Mainframe Architecture 8

1.3.1.2 File Sharing Architecture 8

1.3.1.3 Client / Server Architecture 9

1.3.1.4 Cloud Computing 12

1.3.2 Evolution of Software Design Paradigm 13

1.3.2.1 Non-structured Design Paradigm 13

1.3.2.2 Structured and Modular Design Paradigm 14

1.3.2.3 Object Oriented Design Paradigm 15

1.3.2.4 Component Based Paradigm 16

1.3.2.5 Service Oriented Paradigm 17

1.3.3 Evolution of Programming Languages 17

1.3.3.1 Procedural Language 18

1.3.3.2 Object Oriented Language 19

1.3.4 Evolution of Software Licensing 22

1.3.4.1 Introduction to Software Licensing 22

1.3.4.2 Types of Software Licensing 22

1.4 Types of Software 24

 1.4.1 System Software 25

 1.4.2 Programming Software 27

 1.4.3 Application Software 28

1.5 Utility Software 30

1.6 Perverse Software 35

 1.6.1 Ways to Counter Perverse Software 37

1.7 Open Source Software 38

1.8 Summary 40

1.9 Answers to Check Your Progress 41

1.10 Further Readings 45

1.0 INTRODUCTION

You all must have come across computers being used at many different places –

post offices, hospitals, book stores, grocery stores, universities, banks, publishing

6

Basics of Computer

Software

houses, etc. You have also studied about computers and their applications in the

previous block. But, have you ever wondered how the similar looking machines

can behave so differently? What is it that makes them extremely useful machines

for varied and unlimited purposes, unlike any other machine available to us? For

example we can use a crane only to move loads – its usage is quite limited, but a

computer can be used to create a document, do calculations, give presentations,

book movie tickets, play movies, music or games and accomplish much more.

What makes computer the versatile machines that they are?

It is the software that enables a computer to perform all the useful and desired

functions. Different types of software help a computer to be used for multiple and

varied purposes, in totally different areas of work. We will study about the

software aspect of computers in detail in this unit.

1.2 OBJECTIVES

After going through this unit, you will be able to:

 define what is software;

 discuss different aspects of software evolution; and

 differentiate between types of software.

1.2 WHAT IS SOFTWARE ?

A computer system consists of two parts – hardware and software. The first part,

computer hardware, refers to all the visible components of the computer system:

keyboard, monitor, hard disc, printer, scanner, processing unit, memory, electrical

connections, etc. It does all of the physical work a computer is known for. The

second part is a set of simple and step-by-step sequence of instructions that tell

the hardware what to do and how to do it. This organized set of instructions

written in a defined order and to accomplish a specific task is called computer

software or computer program. Hence, a computer software provides

intelligence to the hardware, which otherwise is just a collection of circuits and

pieces of plastic and metal.

A computer programmer writes the software that gives a computer the ability to

solve any business or scientific problem.

Figure 1.1: Relationship between Hardware and Software

 Software Hardware Software
Programmer

 A Computer System

Codes Instruct
s

7

Software Evolution You already know that the computer hardware is essentially a piece of complex

electronics that understands only 1‘s and 0‘s – electrical ―on‖ or ―off‖ conditions.

Hence, the instructions to perform a task must be written in a series of binary 1‘s

and 0‘s. But, although this binary format, called the machine code makes perfect

sense to a machine, it is incomprehensible to a computer programmer who writes

the program. So a programmer codes the program in the English like

programming language which is easier to understand. This program is then

translated into machine code by another computer program. This translated

program, called the software is eventually executed to achieve the desired goal.

You will study about types of software and its evolution in the following sections.

1.3 SOFTWARE EVOLUTION

As you know that in a computer system both hardware and software complement

each other – one is of hardly any use without the other. Hence, since the very

beginning of computer history, software evolution has been closely tied to the

advances made in hardware. As hardware became faster, cheaper and with better

capacity of storage, software became more complex and sophisticated.

Over the decades computers have been used in new areas and to solve new

problems. With changing needs and improved hardware, the software has evolved

in its various aspects. The software architecture, its design paradigms,

programming languages, its usage, costing and licensing have all changed and

evolved over the years.

Figure 1.2: Different Aspects of Software Evolution

Software evolution with respect to its architecture, design styles, programming

language and licensing will be covered in the following section.

Different Aspects of Software Evolution

Software
Architecture

Aspect

Software Design
Paradigm

Aspect

Programming
Language

Aspect

Software
Licensing

Aspect

Traditional (ex

single/ multi user)

Rental (ex pay per

use, per month)

Object Oriented

Mainframe

File Server

Client Server

Internet Based

Non Structured

Structured &
Modular

Component Based

Service Oriented

Procedural
Language

Transaction based

Technology
Partnership

Object
Oriented
Language

8

Basics of Computer

Software

1.3.1 Evolution of Software Architecture

The software architecture has always moved in unison with the hardware

advancement.

1.3.1.1 Mainframe Architecture

Till a few decades back, all computing was controlled through the central

mainframes server. Multiple users could connect to the central host through

unintelligent terminals which captured the keystrokes, sent the information to the

host and displayed the text output. All the processing was done by the

applications residing on the main central server. Only large transaction-oriented

applications were developed during that time. Business tasks such as accounts

receivable, accounts payable, general ledger, credit account management and

payroll that were repetitive and could be run as batch jobs were automated.

In these centralized computing models, the host provided both the data storage

and processing power for the client systems. There was no support for graphical

user interface or access to multiple databases from geographically dispersed sites.

Figure 1.3: Mainframe Architecture

1.3.1.2 File Sharing Architecture

The development of microprocessor, PC and LAN transformed dumb terminals

into ―smart‖ clients. This brought a complete change in the computing

environment. The client workstations or desktops, with there enhanced

capabilities were now responsible for the user interface and execution of the

application logic. The server provided access to computing resources like printers

and large hard drives for storing the files. It downloaded the file from the shared

location on the server to the client machine. The user application that worked on

the data was run on the client and the file was written back to the server. The

application had to be installed on each workstation that accessed the file.

In this architecture, resources could be added as and when necessary or desired.

Thus, it provided a low cost entry point with flexible arrangement. The drawback

Central Host
(Application and
Database on Mainframe

Machine)

User

Terminal 1

User

Terminal 3

User

Terminal 2

9

Software Evolution was that application logic was executed on the client and server typically provided

files to store data. It worked fine as long as the volume of data transfer was low

and shared usage and content update was low. As the number of online users

grew, the network traffic got congested and the file sharing got strained. Taking

into account the demerits of the file server architectures, the client/ server

architecture made its advent.

Figure 1.4: File Sharing Architecture’\

1.3.1.3 Client/ Server Architecture

As the capacity and power of personal computers improved, the need to share the

processing demands between the host server and the client workstation increased.

This need for greater computing control and more computing value led to the

evolution of client/server technology.

In client/server architecture, the tasks or workloads are partitioned as:

 server programs – providers of a resource or service

 client programs – requester of resource or service

Clients and servers may reside in the same machine or they typically reside in

separate pieces of hardware and communicate over a computer network. A server

machine is a host that runs one or more server programs which share their

resource with clients. A client does not share any of its resources, but requests a

server function or service. The server program fulfills the client request. Clients

initiate a communication session with the server.

The client/ server system may be two-tiered, three-tiered or n-tiered.

Two-tiered architecture: This approach basically introduced a database server to

replace the file server. The emergence of relational database management systems

and graphical user interface applications led to database server which could be

accessed through the GUI based client applications. Since, the clients query the

database over the network and only the relevant data is supplied to the client, the

network traffic is greatly reduced in comparison to the file server system.

The application or business logic in client server applications may reside on the

server (fat server – thin client) or on the client (fat client – thin server). Since,

Centralized

File Server

Shared
Resource 1
(Database)

Workstation 1
(Application Logic)

Workstation 2

(Application Logic)

Workstation 3
(Application Logic)

Shared
Resource 2
(Printer)

10

Basics of Computer

Software

clients and server interact over the network, increases in the number of users often

lead to network congestion. Also, maintenance of the application becomes

difficult with more users. This lack of scalability (Ability of a system to support

increased demands of work, usage or service levels almost instantly, without any

change and with no significant drop in cost effectiveness or quality of service)

and flexibility gave rise to 3-tiered and n-tiered architectures.

Figure 1.5: Two Tier Client Server Architecture

Three-tiered architecture: A new generation of client/server implementation

takes a step further and adds a middle tier in between client and server to achieve

―3-tier‖ architecture. The 3-tier architecture attempts to overcome some of the

limitations of 2-tier schemes by separating presentation (user interface),

processing (business functionality) and data into separate distinct entities. This

leads to enhanced network performance and improved extensibility of business

systems. Still, it has been found that three-tier methodology lacks some critical

features such as reusability (Ability of a computer program to be used repeatedly

with little or no modifications in many different applications) of application logic

code and scalability. There may arise a situation whereby a collection of

application logic code can not be reused and also they do not communicate with

one another. Thus, there came a need for a viable architecture that mainly

facilitates reusability of business logic as reusability phenomena has been found

to reduce the cost of software development and the time to market and its quality

is assured.

Figure 6: Three Tier Client Server Architecture

Figure 1.6: Three Tier Client Server Architecture

Server
(Database)

Client
(User

Interface)

Request

Response

Please Note: Application Logic may be on the client or on the server

Database
Server

Client
(User

Interface)

Request

Response

Application
Server

11

Software Evolution N-tiered architecture: The 3-tier architecture can be extended to N-tiers when

the middle tier provides connections to various types of services, integrating and

coupling them to the client, and to each other. Partitioning the application logic

among various hosts can also create an N-tiered system. Encapsulation of

distributed functionality in such a manner provides significant advantages such as

reusability, and thus reliability (Ability of a computer program to perform its

intended functions and operations for the specified period of time, in the specified

system‘s environment, without experiencing any failure).

Figure 7: N-Tier Client Server Architecture

Figure 1.7 : N-Tiered Client Server Architecture

Internet-based architecture: In the late 1990‘s, the client/server trend was

augmented by the internet. The users access the web servers through the web

browsers on the client machines and over the internet. This led to very thin client

based applications, which reside on corporate web servers.

The advantage of web based applications is that they do not have to be tailored to

run on specific platforms. But since the web applications cannot perform client-

side processing, they limit the user experience by turning the client computers

into ―dumb‖ terminals. Web mails, online transactions are examples of web

applications.

Figure 1.8 : Internet Based Architecture

Client
(Browser)

HTTP

Request

HTTP

Response

Application
Server

Web
Server

Database
Server

Client
(Browser)

Request

Response

Application
Server 2

Application
Server 1

Database
Server

12

Basics of Computer

Software

1.3.1.4 Cloud Computing

As the technology has evolved from Mainframe-based large proprietary

(Computer Programs that are exclusive property of their developers or publishers,

and cannot be copied or distributed without complying with their licensing

agreements) systems to Client-Server architecture based open systems to Open

Source software based solutions, software vendor‘s business has also evolved

over the period of time. Cloud-based software services typically mean that the

consumer does not own the hardware and software, but still gets the desired

service. It is an IT delivery model that offers large-scale, shared infrastructure and

computing resources as a service through self-service pay-per use access.

Although it leverages recently developed technology, cloud computing is a

business, not a technical trend.

Here is some background for the evolution of these services. As the new software

vendors tried to establish themselves in the market, they created solution

differentiators which provide unique value to the consumers. An example is

Salesforce.com, which from the inception offered a hosted Customer Relationship

Management (CRM) solution, while its established competitors (Siebel, SAP,

PeopleSoft etc) had their traditional (also called On Premise, meaning at the

customer site in its dedicated environment) CRM solution. Another reason is that

software vendors started targeting a niche customer segment called Small &

Medium Business (SMB). SMB customers are relatively new in business, so need

to establish the core IT systems in place and also have lesser financial strength, as

a result are more open towards cloud-based solution.

An early example of cloud based computing is web-based emails (hotmail, yahoo,

gmail etc), Chat (AOL, MSN etc). Here the required computer resources are

provisioned centrally in the cloud (internet) and shared by the user pool. These

days, more often, software is bundled with the required shared infrastructure to

provide a solution stack to the consumer.

Key features of cloud computing are:

 Infrastructure sharing: Cloud computing enables dynamic sharing of

resources so that demands can be met cost effectively.

 Scalability: To handle ever increasing workload demands and support the

entire enterprise, cloud computing must have the flexibility to significantly

scale IT resources.

 Self service: Cloud computing provides customers with access to IT resources

through service-based offerings. The details of IT resources and their setup are

transparent to the users.

 Pay-per-use: Because cloud resources can be added and removed according

to workload demand, users pay for only what they use and are not charged

when their service demands decrease.

13

Software Evolution There is another term that is associated with cloud computing:

 Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) – also referred to

as On Demand software. This is a software solution delivery model where the

software and the associated data are hosted centrally (in the cloud) and are

accessed by the consumer through a thin client such as a web browser.

Common applications for this are business applications such as – Accounting,

Collaboration (Email, Messenger, Web meeting etc), Customer Relationship

Management (CRM), Enterprise Resource Planning (ERP), Human Resource

Management etc.

Key benefits of Cloud-based solutions are:

 Lower upfront cost to get started, lower time-to-market (as it takes less time to

get a customer going on a cloud solution), allows the company to focus on the

core business and not worry about hiring and constantly training its staff on

the new technology etc.

 On the flip side for a Cloud-based solution, certain segment of customers such

as large Banks and Financial institutions, Insurance companies may have

security constraints in letting their data reside outside its premises (in their

own data centers).

1.3.2 Evolution of Software Design Paradigm

As the software evolved in its complexity, architecture and use, and as the

programming languages got better, styles of software programming also changed

and improved.

One of the longest standing goals of software design is reusability which leads to

increased reliability, accelerated development and easy maintenance. Over the

years, software languages and software design paradigms which have evolved, all

encourage compartmentalization of functionality to achieve this goal. Similar

functionality is grouped together into small, independent and reusable units.

These units can be used in any application for the purpose for which they were

originally intended.

The first step towards compartmentalization was moving from line by line non

structured program design to procedure-oriented program design.

1.3.2.1 Non-structured Design Paradigm

Non-structured programming is historically earliest programming paradigm. A

non structured program usually consists of sequentially ordered statements,

usually one in each line. The lines are usually numbered or labeled to allow the

flow of execution to jump to any line in program. There is no concept of

procedures in non structured program; hence there are no independent reusable

14

Basics of Computer

Software

units in this programming paradigm. The program flow in non-structured

programming would be as follows:

Figure 1.9: Program flow in Sequential Non Structured Programming

Example of code in non structured programming is:

 INTEGER i

 i=12

1 GOTO 10

2 CONTINUE

 i = i - 1

 IF (i = 0) GOTO 99

10 PRINT*, "Line 10"

 GOTO 2

99 CONTINUE

The above fragment of code simulates a loop using GOTO statement for transfer

of control. Note that the lines are labeled/ numbered so that they can be used with

GOTO. The program executes the statements sequentially. The code simulates a

loop to decrease the value of variable i by 1 till it reaches zero.

The initial value of i is 12. Until the value of i reaches zero, it continues to print

the text ―Line 10‖.

1.3.2.2 Structured and Modular Design Paradigm

Structured design paradigm introduced the concept of selection and repetition of

statements in code execution along with the line by line execution. It allowed

writing of procedures and functions. These are the terms used for a block of code

that is written to perform a single task. Procedures and functions were the

beginning of compartmentalization and hence reusability of program code.

Procedures and functions which were for similar purpose were grouped together

to get a module. A big software application consisted of multiple modules, each

performing a particular task.

Step 1 Step 2 Step 3 Step 4

15

Software Evolution Structural design allowed modules to be reused in the form of code libraries.

Figure 1.10 : Structured Programming with Procedure

As shown in Figure 1.10, same procedure is invoked from step 3 and step 4. There

is also a selection of path to be followed. The two paths would be either steps

1,2,4 or steps 1,3.

The sample pseudo code for the above flow could be:

Steps from Figure 1.10 Code Corresponding to Steps fromFigure 1.10

Step 1

Test Condition – Path 1

Step 2

Step 4

Test Condition – Path 2

Step 3

Procedure

The procedure again has

multiple steps.

Note that in this case Step

3 and Step 4 are same –

Call to the procedure

PrintPrime()

Accept user input in X

If X is even then

 Add 1 to X

 Call procedure PrintPrime(X)

Else

 Call procedure PrintPrime (X)

Procedure PrintPrime (Y)

Accept Y and Check if Y is prime number

If Y is prime

 Display ―Y is prime number‖

else

 Display ―Y is not prime number‖

1.3.2.3 Object Oriented Design Paradigm

The next leap forward towards compartmentalization and reusability was arrival

of object oriented-design that introduced the concept of an object as an atomic

unit of functionality.

Step 1

Step 2 Step 3

Step 4

 Test
Condition

Procedure

Path 1 Path 2

16

Basics of Computer

Software

Object oriented design is built on the premise that programming problems can be

modeled in terms of the objects in the problem domain. In this design, any object

of interest in the real world is an object in the program code. This helps to

effectively model the real world and interactions of items within it. As the objects

in the real world interact with each other, similarly, the objects in the program

interact through their interfaces or messages which are very well defined and

contained in the objects. An object exposes the interface that can be called on by

other objects that need the object‘s functionality. Because an object is a self-

contained entity and because its interface is well-defined it is highly reusable

across many applications.

For example, school and student are objects in real world. They would be

considered as objects in object oriented design also and they would interact with

each other through messages.

Figure 1.11: Object Oriented Programming

In the Figure 1.11 each object has its own properties and methods which

constitute the interface of the object.

Encapsulation is one of the basic principles of object-oriented programming

(OOP) and refers to an object‘s ability to conceal its data (properties) and

methods. Encapsulated objects only publish the external interface so any user

interacting with them only needs to understand the interface and can remain

ignorant as to the internal specifications.

As the applications grew complex, code became more modular and reusable. The

applications were being broken up into pieces that were distributed across many

machines. Breaking applications into multiple parts and distributing them across

multiple platforms presented a new set of reusability problems.

1.3.2.4 Component Based Paradigm

The concepts of Object Oriented paradigm were extended to component based

programming. Component Based Development owes many concepts to object-

oriented methods. It gives a more abstract view of software systems than object-

oriented methods. This model prescribes that programming problems can be seen

as independently deployable black boxes (components) that communicate through

contracts.

School Student

Interacts through
messages

What is your address

Returns Address

Properties

Methods

Properties

Methods

17

Software Evolution The meaning of component or component based programming is intuitive:

programs are broken down into primitive building blocks, which may be flexibly

―plugged together‖ according to well-defined protocols.

The idea behind component based programming is to develop software systems

by assembling a set of independently developed components off-the-shelf (COTS)

in a ‗plug and play‘ manner. For example, a Shopping cart website application

may use off the shelf credit card authorization component.

Components exist at different sizes varying from single objects inside a library to

whole applications. In most cases, however, components are larger entities and

contain several objects.

Components are regarded as part of the starting platform for service-orientation –

whereby a component is converted into a service.

1.3.2.5 Service Oriented Paradigm

Service-Oriented Programming builds on Object oriented programming, adding

the premise that problems can be modeled in terms of the services that an object

provides or uses.

A service is a unit of functionality defined by a set of message exchanges that are

expressed using an implementation neutral grammar. It is a behaviour that can be

implemented or provided by any component for use by any component based on

message exchange.

A service, unlike an object, is an abstract entity whose implementation details are

left largely ambiguous. The only implementation details spelled out are the

messages the service exchanges or message exchanges. This ambiguity, coupled

with the requirement that the messages be defined by an implementation neutral

grammar make a service highly reusable and easy to integrate into a complex

system.

1.3.3 Evolution of Programming Languages

As the software architecture moved from mainframes to Internet based and design

paradigms evolved from non-structured to service oriented, Programming

languages evolved to support the architecture and the design paradigms. As

design became more and more compartmentalized so that the application could be

distributed onto multiple machines, and individual components could be reused,

more and more programming languages were designed to make support these

ideas. For example COBOL is one language that evolved from procedural to

object oriented.

18

Basics of Computer

Software

1.3.3.1 Procedural Language

Procedural programming could also be called linear programming as one thing

happens and then the next. Each instruction is executed in order from the top of

the file to the bottom. It focuses on the idea that all algorithms are executed with

functions and data that the programmer has access to and is able to change. Some

languages which support procedural programming are C, FORTRAN, VB, etc.

Let us consider an example to understand how a procedural language works. You

need to create forms for online inventory system for an automobile parts

manufacturer. You are asked to design two separate forms: one to process

information about cars and other about trucks.

For cars, we will need to record the following information:

 Color

 Engine Size

 Transmission Type

 Number of doors

 Make

For trucks, the information will be similar, but slightly different. We need:

 Color

 Engine Size

 Transmission Type

 Cab Size

 Towing Capacity

 Make

We will code as follows:

/*Declare the Global variables*/

Var Color

Var EngineSize

Var Transmission Type

Var Make

MainProg()

Begin

 If requested for car

 Call CarProcedure()

 If requested for Truck

 Call TruckProcedure()

End

CarProcedure()

Begin

19

Software Evolution

/*Declare the Local variables*/

Var NumberOfDoors

 Process Car Information

End

TruckProcedure()

Begin

/*Declare the Local variables*/

 Var CabSize

 Var TowingCapacity

 Process Truck Information

End

If we need to add form to process information for bus, then we need to change the

MainProg() and add code for Bus Form. But if there is a change in the processing

of all the vehicles, then we need to make changes to all the forms. If we need add

any make specific information for cars, then we need to create multiple forms,

one for each make. Also, we need to be careful about any changes to the global

variables as all the forms are accessing them.

1.3.3.2 Object Oriented Language

Object Oriented Programming is more abstract than procedural programming

because it looks for patterns and reusability. The same code can be loaded and

executed many times to accomplish a task without having to retype it.

Before we consider above example in object oriented, let us understand few terms

and concepts associated with object oriented programming. There are three main

concepts that any language needs to support to be an object oriented language.

Encapsulation: is a mechanism through which a protective wrapper is created to

hide the implementation details of the object and the only thing that remains

externally visible is the interface of the object. (i.e.: the set of all messages the

object can respond to). Encapsulation prevents code and data from being

arbitrarily accessed by other code defined outside the wrapper.

Inheritance: is the process by which a new class is created using an existing

class. It is a way to compartmentalize and reuse code since it allows classes

to inherit commonly used state and behavior from other classes. The new classes

are called the derived classed and the main class is called the parent class.

http://www.ozedweb.com/infotech/it_oops_lesson16_objects_c.htm
http://en.wikipedia.org/wiki/Reusability

20

Basics of Computer

Software

Polymorphism: Polymorphism is the characteristic of being able to assign a

different meaning specifically, to allow an entity such as a variable, a function, or

an object to have more than one form. It is the ability to process objects

differently depending on their data types and to redefine methods for derived

classes.

Following are the few terms that will help you understand object oriented

programming:

 A class is a set of functions that work together to accomplish a task. It can

contain or manipulate data, but it usually does so according to a pattern

rather than a specific implementation. An instance of a class is considered an

object.

 An object receives all of the characteristics of a class, including all of its

default data and any actions that can be performed by its functions. The

object is for use with specific data or to accomplish particular tasks. To

make a distinction between classes and objects, it might help to think of a

class as the ability to do something and the object as the execution of that

ability in a distinct setting.

 A method simply refers to a function that is encased in a class.

 A parameter is a variable that is passed into a function that instructs it how

to act or gives it information to process. Parameters are also sometimes

called arguments.

 A property is a default set of data stored in a class. A class can have multiple

properties and the properties can be changed dynamically through the

methods of the class.

Smalltalk, C++, Java, C# are some of the examples of object oriented languages.

Now let us see how we create classes and use them for the automobile parts

inventory management system example.

Class Vehicle

{/*Data*/

Var Color

Var EngineSize

Var TransmissionType

Var Make

/*Methods for each data*/

 Color()

 {

 Store and update color;

 }

EngineSize()

{

 Store and update EngineSize;

21

Software Evolution }

TransmissionType()

{

 Store and update TransmissionType;

}

Make()

{

 Store and update Make;

}

}

Class Car Inherits Vehicle

{/*Data*/

Var NumberOfDoors

/*Methods*/

 NumberOfDoors()

{

Store and update NumberOfDoors;

}

}

Class Truck Inherits Vehicle

{/*Data*/

Var CabSize

 Var TowingCapacity

/*Methods*/

 CabSize ()

{

Store and update CabSize;

}

TowingCapacity ()

{

Store and update TowingCapacity;

}

}

Now in this case, if we need to add form to process information for bus, then we

just add one more class Bus() which is again inherited form the Vehicle class.

And if we need add any make specific information for cars, then again we can add

make specific classes which can be inherited from the Class Car() We need not

worry about mistakenly modifying any global variables. If there is change in

processing of all the vehicles, then instead of making changes at all the places, we

just modify the Vehicle() class.

22

Basics of Computer

Software

1.3.4 Evolution of Software Licensing

Software licensing has kept pace with the evolution of software solutions offered

by the vendor or the solution provider community.

1.3.4.1 Introduction to Software Licensing

Until early 1970‘s, sharing of software was the accepted norm. Hardware came

bundled with software products which could be freely redistributed and the access

to source code allowed its improvement and modification.

In late 1960‘s, the situation changed after the software cost increased and

manufacturers started to unbundle the software and hardware. A growing amount

of software was now developed for sale. In late 1970‘s and early 1980‘s

companies began imposing restrictions on programmers through copyright. They

achieved financial gains by selling rights of use of software rather than giving the

source code. This led to introduction of software licensing which governed the

usage and redistribution of software. During this time most of the companies

developed proprietary software that was actually the property of the company,

came without the source code and the users basically bought the right to use it in

the way specified under the license agreement.

In early 1980‘s the seeds for free and open software were sown as a deviation

from the proprietary software. The open source software comes with source code

and a license that allows modification and free redistribution.

We will study in the following section, about different types of licenses that

evolved with software over the period of time.

1.3.4.2 Types of Software Licensing

The licensing type generally depends on whether the software is open source

software, is meant for individual use or enterprise wide commercial use:

Individual License: allows you to install the software only on a single stand

alone machine. It may be a perpetual license or Subscription based. Perpetual

license allows you to install and use the software indefinitely. Subscription based

license allows you to use the license for the specified time, after which you may

renew the subscription or remove the software.

Open Source License: It grants you the right to freely modify and redistribute the

software.

Commercial License: These are mostly for the large enterprises that use software

for commercial purposes.. Following are the main licensing models:

23

Software Evolution Traditional model : This includes single user-single license, multi users-

shared license, temporary or fixed-period licenses. This has mostly been used

for large proprietary mainframe applications.

 Transaction-based model : Here, the pricing is based on providing a

committed business service, for ex, processing payroll for a global company

as part of HR offering and this can be priced per employee. Larger the

employee base at a given location, lower the price / employee can be. This

model came into existence with the evolution of software architecture from

mainframes to internet based. As mentioned before, when a company

provided a particular business service, its client could access the system from

anywhere over the Internet and they need not bother about maintaining the

database or the software system. The service provider then charges them for

each transaction/ record processed through their system.

 Rental model : This has come into picture as Software as a Service (SaaS)

and Platform as a Service (PaaS) models have evolved over a period of time.

Here, the buyer need not need make upfront investment in hardware and

software, rather these come as bundled service to them. Few examples where

these are prevalent are – Finance & Accounting (Core Finance), Human

Resources (Core HR), Analytics (Business Intelligence/Reporting),

Procurement etc. There are also scenarios where the software vendor provides

subscription of a given solution (ex. Windows Azure, Salesforce.com, Siebel

On Demand, Amazon Web Services etc) on a periodic (ex. monthly, annual)

basis.

 Technology Partnerships : Such agreements provide the consumer un-

limited access to vendor‘s technology. Such contracts are typically multi-year

in nature where the consumer pays a fixed annual fee, which can be adjusted

in the subsequent years based on the actual usage. For example, a large

corporate customer deciding to use Oracle suite of ERP (Finance, HR),

database, CRM, Business Intelligence/ Reporting solutions can get into a

long-term multi-year partnership.

Check Your Progress 1

1. Compare and contrast the following:

a. Mainframe and File Sharing architecture

b. Client server and Distributed architecture

c. Structured and Non Structured Programming

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Describe the following terms:

a. Software Reusability

b. Software Reliability

c. Encapsulation

24

Basics of Computer

Software

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. What do you understand by Software-as-a-Service? How is it different from

Cloud Computing?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

4. What is pay-per-use licensing?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

1.4 TYPES OF SOFTWARE

There is a wide variety of software available today. And there is no clear cut

distinction in certain software systems. Still, most computer software can be

broadly classified as:

 System software

 Programming software

 Application software

At times the categorization is vague and some software may fall into more than

one categories.

Figure 1.12: Types of Software and their interrelationship

Hardware

System Software

Programming Software

Utility Software

End User

Application Software

http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Programming_software
http://en.wikipedia.org/wiki/Application_software

25

Software Evolution 1.4.1 System Software

System software helps run the computer hardware and system. It is designed to

control the operations of a computer and coordinate all external devices like

communication devices, printers, keyboards, display units, etc. It manages all the

computer resources like memory and processor time in optimal and stable

manner.

System software provides a useful link between user and computer. It also assists

the computer in the efficient control, support, development and execution of

application software. System software is essential for computer hardware to be

functional and useful.

Some common types of system software are:

a) Operating Systems

Operating System is the software that manages all the computers‘ resources to

optimize its performance provides common services for efficient execution of

various application software and acts as an interpreter between the hardware,

application programs and the user.

An operating system is essential for any computer to be useful to us. When a user

or a program wants the hardware to do something, the request is always

communicated to and processed by the operating system.

Operating systems performs basic tasks, such as recognizing input from the

keyboard, sending output to the display screen, keeping track of files and

directories on the disk and controlling peripheral devices.

For large systems, the operating system has even greater responsibilities and

powers.

Most operating systems perform the functions given below:

 Process Management

 Memory Management

 File Management

 Security

 Command interpretations

You will study in detail about the operating system in the following units in this

block.

http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Hardware

26

Basics of Computer

Software

b) Server Programs

Server programs are dedicated computer programs that run as services and serve

the needs or requests of other programs. These services may run on a dedicated

hardware or on the same computer as the requesting program. Also, one on more

services may run on the same computer hardware. Some common examples of

different types of server programs are:

 Web server – for hosting websites.

 Print server – manage multiple print requests for multiple printers.

 File server – manages the storage and retrieval of shared computer files.

 Database server – provide database services to other computer programs.

 Mail Server – manages and transfers electronic mail messages.

c) Device Drivers

Device drivers are shared computer programs that provide an interface between

the hardware devices and operating system or other higher level programs.

You need a specific software program to control each hardware device attached to

the computer. It is very tedious to make any piece of hardware work. For example

to write to a hard disk, you need to know the specific address available, wait till

hard disk is ready to receive data and then feed it with data once it is ready. So

instead of writing the same code for a device in multiple applications you share

the code between applications. To ensure that the shared code is not

compromised, you protect it from users and programs. Such a piece of code is

called the device driver.

Device drivers are hardware dependent and operating system specific. They allow

you to add and remove devices conveniently from your computer system without

changing any of the applications using that device.

Common hardware components that require drivers are:

 Keyboards

 Mouse

 Printers

 graphics cards

 sound cards

 card readers

 CD/ DVD drives

 Network cards

 Image Scanners

27

Software Evolution d) Communications Software

In a networked environment, the communication software or network operating

system allows computers to communicate with each other. It enables sharing and

transferring of data across the network. It controls network operations and

manages network security.

1.4.2 Programming Software

Programming software usually provides tools to assist a programmer in writing

computer programs, and software using different programming languages in a

more convenient way. It shields the application software programmer from the

often complex details of the particular computer being used.

Programming Software includes the following:

a) Compilers

A compile is a program that translates the code written in a high-level

programming language (called the source code) to the code in lower level

language (the object code). The compiler translates each source code instruction

into a set of, rather than one object code instruction. Generally, the object code is

the machine language code.

When a compiler compiles a program, the source program does not get executed

during the process, it only gets converted to the form that can be executed by the

computer.

Figure 1.13: Compiler

b) Debuggers

A debugger or debugging tool is a computer program that is used to test

and debug other programs (the target program).

Typically, debuggers offer functions such as running a program step by

step (single-stepping) or breaking (pausing the program to examine the current

state) at some event or specified instruction by means of a breakpoint, and

tracking the values of some variables. Some debuggers have the ability to modify

the state of the program while it is running, rather than merely to observe it. It

may also be possible to continue execution at a different location in the program

to bypass a crash or logical error.

Source
Code

Object
Code

Compiler

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

Code
Generator

http://en.wikipedia.org/wiki/Programming_software
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Debug
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Stepping_(debugging)
http://en.wikipedia.org/wiki/Breakpoint

28

Basics of Computer

Software

c) Interpreters

Interpreter is another translation program. It takes the source code instruction, one

at a time, translates and executes it.

Figure 1.14: Interpreter

d) Linkers

A linker or link editor is a program that takes one or more Object file codes

generated by a compiler and combine them into a single executable program.

When large software, involving many programmers is to be developed, then the

modular approach is adapted. The software is divided into functional modules and

separate source programs are written for each module. Each of these source files

can then be compiled independent of each other to create a corresponding object

file. Eventually, linker is used to combine all the object files and convert them

into a final executable program.

Figure 1.15: Linker

e) Text editors

A text editor is a type of program used for editing plain text files.

Many text editors for software developers include source code syntax

highlighting and automatic completion to make programs easier to read and write.

Common text editors in Windows environment are Notepad and Textpad.

1.4.3 Application Software

Application software is designed and developed to accomplish one or more

specific task or solve a particular problem.

Application software may be for commercial or scientific use. There is wide range

of application software available for varied purposes. Some major categories of

these applications include:

Source Code

(one line at a time)

Interpreter Execution

Results

Object Code

Linker Execution
Results

External
Libraries

http://en.wikipedia.org/wiki/Interpreter_%28computing%29
http://en.wikipedia.org/wiki/Linker_%28computing%29
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Object_file
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Text_file
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Syntax_highlighting

29

Software Evolution a) Word Processing Software can be used to create, edit, format, save, view or

print any text based document like letters, memos, reports, etc. MS Word is an

example of word processing software

b) Spreadsheet Software can be used to create any numeric based documents or

as numeric data-analysis tool. For example it can be used to make budgets,

financial statements, comparative charts, etc. MS Excel is an example of

Spreadsheet software.

c) Database Software can be used to store, maintain, manipulate and organize a

large set of data. For example, it can be used to maintain address, phone number

directory, client directory, etc. Oracle is an example of database software.

d) Presentation Software like MS PowerPoint can be used to create and present

slide show.

e) Graphics Software can be used to manage and manipulate pictures,

photographs, movies, etc. Photoshop, Illustrator and MS Paint are examples of

graphics software.

f) Multimedia Authoring Application can be used to create digital movies with

sound, video, animation and interactive features. Mediator 9 is an example of

multimedia authoring tool.

Other applications include:

 Entertainment and Education Software

 Industrial automation

 Business software like inventory management, airline reservation

 Video games

 Telecommunications

 Mathematical software

 Medical software

 Scientific software like molecular modeling, quantum chemistry software

 Image editing

 Simulation software

 Decision making software

http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Business_software
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Mathematical_software
http://en.wikipedia.org/wiki/Medical_software
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
http://en.wikipedia.org/wiki/Image_editing
http://en.wikipedia.org/wiki/Simulation_software
http://en.wikipedia.org/wiki/Decision_making_software

30

Basics of Computer

Software

Check Your Progress 2

1. Compare and contrast the following:

a. System and Application Software

b. Compiler and Linker

c. Compiler and Interpreter

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2. Give an example of each of the following:

a. Decision Making Software

b. Education Software

c. Industrial Automation Software

d. Mathematical Software

e. Simulation Software

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

3. You bought a new printer. You attached it to the computer and plugged to the

power, but it still does not work. What do you think must have happened and

how can you resolve the issue?

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

4. List which software will be required to perform the following actions:

a. You have write code in C++. What software you will use to write the code

in?

b. You have attached a new scanner to your machine to scan your

photographs. What software you will use to get it working?

c. You have bought a new PC. What is the first piece of software that is

needed to be installed for it to be useful so that other software could be

added?

d. You have created a student registration system. What will you use to store

the students data.

1.5 UTILITY SOFTWARE

Utility programs help manage, maintain and control computer resources. These

programs are available to help you with the day-to-day chores associated with

personal computing and to keep your system running at peak performance.

Some of utility programs are discussed below:

31

Software Evolution Anti-virus software

Computer viruses are software programs that are deliberately designed to interfere

with computer operation; record, corrupt, or delete data; or spread themselves to

other computers and throughout the Internet. Virus Scanning Software are utility

programs designed to protect your computer from computer viruses, worms and

trojan horses.

Historically, computer viruses were associated with self-reproducing executable

programs that manipulated or even destroyed data on infected computers. They

were known to spread by infected floppy disks, network or other hardware media.

With the advent of internet, the viruses spread online as well. They can also

spread through powerful macros used in word processor applications, like MS

Word, or email programs where viruses are embedded in the email body itself and

reproduce when the message is just opened or previewed.

To help prevent the most current viruses, you must update your antivirus software

regularly. You can set up most types of antivirus software to update

automatically.

Most anti-virus programs use one of the following techniques to identify viruses:

1. Signature based detection: This is the most common method. It compares

the contents of the infected file to a known pattern of data. Because viruses

can embed themselves in existing files, the entire file is searched.

2. Heuristic-based detection: This method is primarily used to identify

unknown viruses by looking for malicious code or variations of such code.

3. File emulation: This is another heuristic approach in which the infected

program is run in a virtual environment and the actions it performs are

recorded. The actions are analyzed to check for any malicious actions and

carry out disinfection actions accordingly.

No matter how useful antivirus software can be, these can sometimes have some

drawbacks.

 Antivirus software can impair a computer's performance. Active anti-virus

programs can cause conflicts with other programs.

 A "false positive" is when antivirus software identifies a non-malicious file as

a virus. When this happens, it can cause serious problems. For example, if an

antivirus program is configured to immediately delete infected files, a false

positive in a essential file can render the operating system or some

applications unusable.

 Most popular anti-virus programs are not very effective against new viruses.

The reason for this is that the virus designers test their new viruses on the

major anti-virus applications to make sure that they are not detected before

releasing them into the market.

http://en.wikipedia.org/wiki/Floppy_disk
http://en.wikipedia.org/wiki/Macro_%28computer_science%29
http://en.wikipedia.org/wiki/Word_processor
http://en.wikipedia.org/wiki/Heuristic
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Computer_performance

32

Basics of Computer

Software

 Some apparent antivirus programs are actually malware being sold as

legitimate software, such as Win Fixer and MS Antivirus.

 Some commercial antivirus software agreements include a clause that the

subscription will be automatically renewed. For example, McAfee requires

users to unsubscribe at least 60 days before the expiration of the present

subscription. Norton Antivirus also renews subscriptions automatically by

default.

 Finally, antivirus software generally runs at the highly trusted kernel level of

the operating system, creating a potential avenue of attack

Despite the drawbacks, anti-virus software have become a necessity these days. A

number of popular anti-virus programs include those by Kaspersky, Symantec,

McAfee, and Norton. The cost of the program increases with the increase in the

number of virus detection and removal features and ease they offer.

Backup utilities

Backup refers to making copies of data so that these additional copies may be

used to restore the original after a data loss event. All types of data could be

backed up like pictures, word documents, files, executables or an entire database.

The main purpose is to recover data in the event of data loss or data getting

corrupt. Other purpose could be to recover historical data.

A number of Backup software are available that assist you in taking backup of

your important data on the computer. Selecting between various back-up software

is not only a based on the cost but also on the software that meeting the

requirements.

A backup software could allow automated scheduling of backup in addition to just

creating copy of files. The software should be easy to install and maintain. It

should be intuitive and easy to use. The restoring from the back-up should be

simple. Accessing restored data should be automatic, and the backup should

preserve original data files and paths. A backup software that can compress data

helps in storing data in lesser space. Certain software also allows securing the

backed-up data with passwords and encryption. Good documentation and

technical support goes a long way in ensuring help is available when needed.

Backup could be taken on variety of media including hard drive, CDs, DVDs,

floppy disks etc. It could also be taken on FTP locations, tape or online servers. A

number of free and proprietary back-up software are available including those

from Microsoft, Symantec, Apple, IBM, and Norton.

It is important to take backup of important data regularly and also verify that it

can be restored successfully.

http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/WinFixer
http://en.wikipedia.org/wiki/MS_Antivirus
http://en.wikipedia.org/wiki/Subscription
http://en.wikipedia.org/wiki/McAfee
http://en.wikipedia.org/wiki/Norton_Antivirus
http://en.wikipedia.org/wiki/Kernel_%28computing%29
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Attack_%28computer%29

33

Software Evolution Diagnostic programs

A diagnostic program is a program written for the purpose of locating problems

with the software, hardware, or both, or a network of systems. A diagnostic

program provides solutions to the user to solve issues.

In practical experience, these tools do not usually identify the exact cause of the

system problem, but they often provide some information about what is in the

system and how it is working. Some of these are free or are included with

common operating systems at no additional charge, while others are commercial

products that range from affordable to rather pricey.

Here are some common software diagnostic tools.

 Power-On Self Test (POST) : This isn't a separate diagnostic utility; it is in

fact built into your system BIOS and it runs every time you start up your PC

automatically. It is often the best indicator of system problems. Don't disable

its error-reporting functions unless you really need to.

 MEM.EXE : This simple utility, built into Windows operating system that

provides you with details about your memory configuration, as well as what is

currently using your memory.

 Microsoft Diagnostics : Better known as "MSD.EXE", this is a small DOS

utility that takes a brief inventory of the contents of your PC and shows them

to you in a text-based format. This is very useful for seeing what disks are in

the system, how much memory is installed, and also for checking system

resource usage. It will show you what type of BIOS you are using.

 The Windows Device Manager : This is the most useful tool for identifying

system configuration and resource usage information.

 Norton System Information : This utility is similar to the Microsoft

Diagnostics, only more detailed in its later versions. SI shows a great deal of

information about what is in the PC, going well beyond what MSD gives you,

but really is still an information utility as opposed to a true diagnostic. This

program is part of Symantec's Norton Utilities.

 Microsoft ScanDisk and Norton Disk Doctor : These programs are used to

check for hard disk problems. This includes file system corruption and hard

disk read errors. They should be used when hard disk problems are suspected.

 Scandisk is a utility provided with Windows computers. Scandisk scans your

disks to see if there are any potential problems on the disk, such as bad disk

areas. Since disks are magnetic media, all disks, including your hard drive can

be corrupted

 Microsoft Disk Defragmenter software assists you in keep reorganizing your

disk drives. After files are saved, deleted and resaved again, the disk can

become fragmented --- available space is in small blocks located throughout

34

Basics of Computer

Software

the disk. Disk defragmenters gather those free spots and put them together to

enable you to continue to save your data in the most efficient manner.

 Norton Diagnostics : This utility is meant to go beyond the System

Information program and actually perform tests on the hardware to identify

problems. It includes tests of the processor and motherboard and system

memory, and will identify some types of resource conflicts. In reality, it is still

quite limited in terms of the numbers of problems it will find.

 QAPlus : QAPlus from DiagSoft is a more advanced diagnostic suite that

comes in several flavours, depending on what you need to do and how you

want to do it. This is a more expensive package but can give you much more

detailed information about your system and help identify problem situations as

well.

File view programs

File view utilities let you see the contents of a wide variety of documents even

when you don't have the application on your system

A file viewer is limited-functionality software it does not have a capability to

create a file, or modify the content of an existing one. Instead, it is used only to

display or print the content. File viewers do not edit files, but they are able to save

data in a different file format.

All the fundamental types of file viewers are filters which translate binary files

into plain text (one example antiword). Another common type of file viewer is a

picture viewer that can display picture files of various formats. Common features

here are thumbnail preview and creation, and image zooming.

The primary reason behind limited functionality is marketing and control. For

example, a popular software program, Adobe Acrobat, can be used to create

content for most computer platforms, under various operating systems. To ensure

that people can access the documents created with Adobe Acrobat, the software

publisher created a viewer program, the Acrobat Reader, and made it available for

free. This viewer application allows the content created by the proprietary

authoring software to be readable on all supported operating-system platforms,

free of charge, thus making it a more attractive solution.

There are many products which can qualify as a file viewer: Microsoft Word

viewer or Microsoft PowerPoint viewer, and the Open Office equivalents are

examples. In a sense, a web browser is a type of file viewer, which translates, or

renders, the HTML markups into a human-friendly presentation. Although HTML

is plain text, viewing an HTML file in a browser and in a text editor produces

significantly different results.

Google Docs is another very good example of online file viewer. Google Docs

Viewer supports 12 new file types in, including all remaining Microsoft Office

file types, Apple's Pages format, and Adobe's Photoshop and Illustrator files.

35

Software Evolution Computer performance enhancement utilities

A number of utilities are available to improve the overall performance of the

computer system by letting you speed up your system or increase storage space.

These utilities range from those that come packaged with the operating system or

can be purchased separately.

Disk defragmenter utility reorganizes non contiguous files into contiguous files

and optimizes their placement on the hard drive for increased reliability and

performance.

There are many hardware and software accelerators available to enhance

performance in a particular area. For example, download accelerators are software

tools to increase the download speed, while graphic accelerators are coprocessors

that assist in drawing graphics.

The Windows registry can quickly become crowded and hence slower to search

when you remove unused programs that do not uninstall properly. There are

utilities like Registry Mechanic or Registry Clean Expert that can help clean

Windows registry to improve performance.

1.6 PERVERSE SOFTWARE

Perverse software is a program which causes hindrances in other programs

execution in such a way resulting in modification or complete destruction of data

without the user's intention or even sabotaging the operational system.

Perverse Software is also known as Malicious software or malware. It is a type of

software that is designed to secretly access a computer system, without the

owner‘s consent, and damage the system. The impact can be as damaging as

shutting down a business, pulling down computer network or significantly

impacting regular use of individual computer systems etc. The damage done can

vary from something as little as changing the author's name in a document to full

control of one‘s machine without the ability to easily find out.

Most malware requires the user to initiate its operation. For example, sending

infectious attachments (it acts when users downloads them and runs the

attachment) in e-mails, browsing a malicious website that installs software after

the user clicks ok on a pop-up, and from vulnerabilities in the operating system.

Early infectious programs, such as Internet Worm and MS DOS viruses, were

written as experiments and were largely harmless or at most annoying. With the

spread of broadband Internet access, malicious software has been designed for a

profit, for forced advertising. Here the malware keeps track of user‘s web

browsing, and pushes related advertisements.

http://en.wikipedia.org/wiki/Broadband
http://en.wikipedia.org/wiki/Internet

36

Basics of Computer

Software

Typical types of malicious software are - Computer virus, Computer Worm,

Trojan horse, Rootkits, Spyware etc.

Here is brief information about the various types of malware:

Computer Virus

Computer virus is a small software program that is designed to enter a computer

without users‘ permission or knowledge, to interfere with computer operation and

to spread from one computer to another. A computer virus needs to attach itself to

a document or program to infect other computers or programs.

Some viruses do little but replicate while others can cause severe harm or

adversely effect program and performance of the system. They can destroy files,

software, program applications, and cause the loss of data.

There are various types of computer virus that can be classified by their origins,

techniques of attack, modes of spreading, forms of infections, hiding locations

and the kind of damage caused. Examples of computer viruses are: Randex,

Melissa.A and Trj.Reboot

Computer Worm

Computer Worm is a program that is very similar to a virus. It has ability to self

replicate. It actively spreads itself over the network, copies itself from one disk

drive to another or copies using email. It does not need user action to start it

unlike virus. Examples of worms include: PSWBugbear.B, Lovgate.F, Trile.C,

Sobig.D, Mapson.

Trojan Horse

When a program is disguised as something interesting and desirable, users are

tempted to download and install it on their machine, without knowing what it

does. This is when it does the damages by deleting files from the system or by

further installing unwanted software. This is the typical technique of Trojan horse.

For example, a file called "saxophone.wav file" on the computer of user who's

interested in collecting sound samples may actually be a Trojan Horse. Trojan

Horses unlike viruses do not reproduce by infecting other files, nor do they self-

replicate like worms, but they are extremely dangerous to users computer's

security and personal privacy. They make a computer susceptible to malicious

intruders by allowing them to access and read files.

Rootkits

This is a technique using which the malware remains concealed in the system, and

continues to do the damage in a concealed manner. Rootkits can prevent a

malicious process from being visible (ex Task Bar in Windows operating system)

37

Software Evolution in the list of running applications. Rootkits normally attempt to allow someone to

gain control of a computer system. These programs are usually installed by

trojans and are generally disguised as operating system files.

Trap doors

This is a way of bypassing normal authentication procedure (windows/ operating

system user name and password) to access a system. Once a system is

compromised (impacted by) by malware, one or more backdoors may be installed

for easier future access to the system.

Logic Bombs/ Time Bombs

Logic Bombs are not programs in their own right but rather camouflaged

segments of other programs. They are not considered viruses because they do not

replicate. But their objective is to destroy data on the computer once certain

conditions have been met. Logic bombs go undetected until launched, and the

results can be destructive. For example, some malicious programs are sot off

during days such as April Fools Day or Friday the 13th.

Spyware

While so far we have discussed the malware‘s intent to damage the computer

system, spyware is designed for commercial gain. These programs gather

information about the user in a concealed manner, show pop-up advertisements,

redirects the search engine results to paid advertisements etc.

Keystroke loggers

This is a program, once installed on the system, which intercepts the keys when

entering the password or the Credit Card number while shopping online. This can

be used for Credit Card fraud.

Data-stealing

This is a web threat that results in stealing of personal and proprietary information

to be used for commercial gains either directly or via underground distribution.

Some popular examples of recent data-stealing cases are – steal and sell large

number of credit card numbers from businesses such as TJX, OfficeMax, Sports

Authority etc.

1.6.1 Ways to Counter Perverse Software

Some common ways of countering Malware are as following:

 Ensure that the operating system and any program one uses are up to date with

patches/updates.

38

Basics of Computer

Software

 Block unwanted email viruses by installing a spam filter and spam blocker.

 When browsing the internet, always watch what one clicks and installs. Do

not simply click OK to dismiss pop-up windows.

 Install anti-virus software; scan and update regularly. It can, in most cases,

remove and prevent viruses, worms, trojans, and (depending on the software)

some spyware.

 Install anti-spyware/anti-adware; scan and update regularly. It will remove

and (depending on the software) prevent future adware and spyware.

1.7 OPEN SOURCE SOFTWARE

Open Source Software (OSS) is software that comes with source code, and

importantly also provides rights (typically reserved for copyright holders) to

study, change and improve the software. This development happens in a larger

collaborative environment, without any direct objective of the software‘s

commercial success.

Primary objectives of the Open Source movement are as following:

 Encourage innovation at the grass-root level and facilitate collaborative

software development involving individual talent than it being the prerogative

of the large companies.

 Reduce the software cost.

 Improve quality and security

 Avoid forced lock-in to vendor‘s proprietary software.

Open Source Initiative (OSI) is the patron of the Open Source Definiton (OSD)

and is the community-recognized body to evaluate and approve the software as

OSD compliant. Some key criterion for OSD compliance are mentioned below:

 Free Redistribution : The license should allow any party to sell or give away

the software as a component of a larger software distribution containing

programs from multiple sources. The license shall not require a royalty or

other fee for such sale.

 Source Code : The program must include source code, and must allow

distribution in source code as well as in executable form. Where some form of

a product is not distributed with source code, there must be a well-publicized

means of obtaining the source code for no more than a reasonable

reproduction cost preferably, downloading via the Internet without charge.

 Derived Works : The license must allow changes to the existing source code

and must allow them to be distributed under the same terms as the license of

the original software.

 No Discrimination against specific applications : The license must not

restrict anyone from making use of the program in a specific scenario. For

http://www.spamlaws.com/spam-filters.html
http://www.spamlaws.com/spam-blocker.html

39

Software Evolution example, it may not restrict the program from being used in a business, or

from being used in drug research.

 License must Not Be Specific to a Product : The rights attached to the

program must not depend on the program being part of a particular software

distribution.

 License must Not Restrict Other Software : The license must not place

restrictions on other software that is distributed along with the licensed

software. For example, the license must not insist that all other programs

distributed on the same medium must be open-source software.

Some examples of Open Source Software are:

Programming language

 PHP - Scripting language suited for the web

Operating System

 GNU Project — ―a sufficient body of free software‖

 Linux — operating system kernel based on Unix

Server Software

 Apache — HTTP web server

 Tomcat web server — web container

 MySQL – database, popular for applications built on LAMP stack (Linux,

Apache, MySQL, PHP/PERL/Python)

 MediaWiki — wiki server software, the software that runs Wikipedia

Client software

 Mozilla Firefox — web browser

 Mozilla Thunderbird — e-mail client

Some typical challenges that used to be associated with the Open Source Software

were lack of product support that typically comes with proprietary software,

future upgrades, end-user training etc. Over a period of time, industry has evolved

to overcome these challenges. For example, Red Hat Linux sells Linux operating

system and provides product support, training as well. Further, it is important to

note that Open Source Software is not always the best option for all the business

needs. However, it does provide a good alternative to the proprietary software.

One needs to do the required due-diligence to decide the right product for a

specific situation.

http://en.wikipedia.org/wiki/MediaWiki

40

Basics of Computer

Software

Check Your Progress 3

1. Differentiate between open source and proprietary software?

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………….

2. Identify open source software from the following list?

a. OpenOffice

b. Filezilla

c. MS Word

d. Pidgin

e. Confluence

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………….

3. What measure should you take to safeguard your computer from a virus

attack?

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………….

4. Name a few computer performance enhancement utilities?

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………….

1.8 SUMMARY

Software is the brain of computer systems. Any piece of hardware is useful till it

has its associated software.

In this unit, we studied how software evolved over the years. Software grew in its

size, usage, complexity, development techniques, design and architecture. In the

early days software was developed for large centralized systems. It was generally

bundled with the hardware, since the cost of software was negligible in

comparison to the hardware. The source code was easily available for

modification, improvement and redistribution. As the hardware developed,

machines became smaller yet much more powerful, computer systems usage and

software complexity increased considerably. Higher complexity resulted in higher

software costs. Software now came at a price and with restrictive licenses.

41

Software Evolution One could no longer use, modify or redistribute it freely. Various licensing

models evolved based on whether the software would be used by an individual or

limited users or enterprise wide, whether it is for commercial or non commercial

purposes, whether it is free software or proprietary software, or how often it is

used. Companies have been selling these licenses to increase their revenues. The

changing pattern of software distribution and sharing led to a movement for free

and open source software.

We also learnt about different types of system, programming, application and

utility software. We learnt how each one can be useful either to enhance a

computer systems performance or to improve our productivity and efficiency in

all our jobs. Availability of such wide variety of software makes computer

systems infinitely useful in all kinds of work areas.

1.9 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress 1

1. a) In the Mainframe architecture all operations and functionality are

contained within the central (or "host") computer. Users interact with

the host through 'dumb' terminals which transmit instructions, by

capturing keystrokes to the host and display the results of those

instructions for the user.

File Sharing architecture is network (LAN) based where ‗intelligent‘

PC‘s or workstation‘s downloads files from a dedicated "file server"

and then runs the application (including data) locally.

b) In Client Server architecture, the Client software requests for the

service and Server software provides the service. The client and the

server software may be on the same machine or two different

networked machine.

In the distributed systems, different parts or components of an

application run on different networked machines. There are set of

standards that specify how different distributed components

communicate.

c) In Structured programming statements are organized in a specific

manner to minimize error or misinterpretation. It enforces logical

structure of the program. Here large routines can be broken down into

smaller, modular routines. It discourages GOTO statements.

Non Structured programming is the earliest programming paradigm in

which program usually consists of sequentially ordered commands, or

statements, usually one in each line. It does not enforce any logical

42

Basics of Computer

Software

structure of the program. Its needs discipline on programmers part to

write readable and understandable code. Here the whole code is written

in one module. It makes extensive use of GOTO statements that leads to

spaghetti code.

2. a) Software Reusability: Ability of a computer program to be used

repeatedly with little or no modifications in many different applications.

For example code to authenticate credit card information can be used at all

the places where payment is through credit card.

 b) Software Reliability: Ability of a computer program to perform its

intended functions and operations for the specified period of time, in the

specified system‘s environment, without experiencing any failure. The less

there is breakdown of the system, the more reliable it is.

 c) Encapsulation: Ability to hide data and methods from outside the world

and only expose data and methods that are required. It helps in hiding all

the internal details from outside world. It also provides a way to protect

data from accidental corruption

3. Software-as-a-Service (SaaS) is basically a software delivery model where

customers can use the software application as a service on demand and

pay for it per usage. It is based on the concept of renting application

functionality from a service provider rather than buying, installing and

running the software yourself.

Cloud computing is the broader concept of using the internet to allow

people to access the technology enabled services. Those services must be

‗massively scalable‘ to qualify as true ‗cloud computing‘.

Cloud computing is basically what SaaS applications run on.

4. With advances in networking technology, vendors began to introduce non-

perpetual licensing models, such as subscription or pay-per-use licensing.

In the pay-per-use, user is charged each time he/she uses the software,

service or module and user does not own the software, rather uses it at on

rent for the limited period. There is time based pay-per-use arrangement

and transaction based pay-per-use arrangement.

In a time based pay-per-use arrangement, consumers are charged for the

amount of time that they used non-owned copies of the software.

In a transaction based pay-per-use arrangement, usage charges occur

because a software module has been used. The duration of use is

irrelevant.

43

Software Evolution Check Your Progress 2

1. a) A system software is any computer software which manages and controls

computer hardware so that application software can perform a task.

Operating systems, such as Microsoft Windows, Mac OS X or Linux are

prominent examples of system software. System software is an essential

part of computer operations. Application software is a program that enable

the end-user to perform specific, productive tasks, such as word

processing or image manipulation.

b) Compiler is a program the converts a source code in high level language to

the object code in low level language.

Linker is a program that uses multiple object files created by the compiler

and predefined library object files, links them together and creates a single

executable file.

c) Compiler is a program that takes the whole source code in high level

language and converts it into the source code in low level language. Any

errors are reported at compile time for the complete code. Once the

translation is complete, only the executable version of the code runs in the

memory.

An interpreter takes the source code in high level language one line at a

time during run time, translates the instruction into low language code and

executes it before proceeding to the next instruction. Hence the interpreted

program remains in the source language and is converted into low level

language only at run time. So the translator program also needs to be in

the memory at run time.

Since the compiler translated the whole program before it is run while

interpreter translates one line at a time while the program is being run,

compiled programs run faster than the interpreted ones.

2. Examples are as follows:

a. Decision Making Software - Expert Choice, Decision Manager

b. Education Software – Jumpstart, Reader Rabbit

c. Industrial Automation Software – Computer aided manufacturing (CAM),

Programmable Logic Controller

d. Mathematical Software - Mathcad, Matlab

e. Simulation Software – OpenModelica, Circuitlogix

44

Basics of Computer

Software

3. The device driver for the printer may not have been installed. You can

search for the driver for the particular printer on the internet and install it on

your machine.

4. a. Text Editor (for ex TextPad)

 b. Device Driver for the scanner

 c. Operating System (for ex Windows Vista)

 d. Database Software (for ex MS Access)

Check Your Progress 3

1. Proprietary software refers to any computer software that has restrictions on

any combination of the usage, modification, copying or distributing modified

versions of the software. It is owned by an individual or a company (usually

the one that developed it). Its source code is almost always kept secret.

Advantages of proprietary software include: 1) Availability of reliable,

professional support and training; 2) Packaged, comprehensive, modular

formats; and 3) Regularly and easily updated. The disadvantages are: 1)

Costly, and 2) has closed standards that hinder further development.

Open source refers to a program in which the source code is available to the

general public for use and/or modification from its original design free of

charge. Open source sprouted in the technological community as a response

to proprietary software owned by corporations. Advantages of Open source

are: 1) Low cost and no license fees; 2) Open standards that facilitate

integration with other systems; and 3) it is easily customizable. The

disadvantages are: 1) Lack of professional support; 2) Evolving developer

communities; 3) Lack of release co-ordination; and 4) Erratic updates.

2. OpenOffice (Word Processing Software), Filezilla (FTP Software), Pidgin

(Instant Messaging Software)

3. a Install anti virus and anti spyware. Scan and update regularly.

b. Keep the windows system updated with patches and updates.

c. Browse and click only known and secure web sites. Avoid suspicious

ones.

d. Open email attachments from verified source only.

4. TweakVista, Boost Windows 2009, Registry Cleaner, WinUtilitites, System

Optimize Expert.

http://www.webopedia.com/TERM/S/software.html
http://www.linfo.org/source_code.html

45

Software Evolution
1.10 FURTHER READINGS

Information Technology The Breaking Wave By Dennis P. Curtin, Kim Foley,

Kunal Sen, Cathleen Morin, Tata- McGraw-Hill Edition.

Introduction to Computers By Peter Norton, Sixth Edition Tata McGraw-Hill

Publishing Company Limited.

Computer for Beginners By Er. V. K. Jain, Pustak Mahal.

Introduction to Computer Science By I. T. L. Education Solutions Limited.

http://www.opensource.org/.

http://en.wikipedia.org/wiki/Malicious_software.

http://www.opensource.org/
http://en.wikipedia.org/wiki/Malicious_software

