No. of Printed Pages: 3

MCS-013

MCA (Revised) / BCA (Revised)

Term-End Examination

June, 2018

12165

MCS-013: DISCRETE MATHEMATICS

Time: 2 hours Maximum Marks: 50

Note: Question number 1 is **compulsory**. Attempt any **three** questions from the rest.

- 1. (a) How many three digit numbers are there with no digit repeated?
 - (b) Show that 2 $\sim (p \lor q) = \sim p \land \sim q$
 - (c) Prove that ab + [c (a' + b')] = ab + c
 - (d) Find the domain for which the function $f(x) = 3x^2 1$ and g(x) = 1 5x are equal.

 Also find a domain for which the functions are not equal.

	(e)	Prove that	3
		$(A - B) \cup B = A \cup B$	
	(f)	If there are 12 persons in a party, and if each two of them shake hands with each	
		other, how many handshakes happen in	
		the party?	3
	(g)	Show that for integers greater than zero:	3
	1.	$2^{n} > = n + 1$	
2.	(a)	Use mathematical induction method to prove that	4
		$1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n+1)(2n+1)}{6}$	
	(b)	Draw Venn diagrams to represent the	
		following for sets A, B and C.	4
		(i) A Δ B	
		(ii) $A \cap B \cup C$	
	(c)	Find n if $2P(n, 2) + 50 = P(2n, 2)$.	2
3.	(a)	If $f : R \rightarrow R$ is a function such that	
,		f(x) = 3x + 5, prove that f is one-one onto.	4
	(b)	Show that $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ is a tautology.	3
	(c).	Find in how many ways can 25 identical	
		books be placed in 5 identical boxes.	3

4. (a) Find the Boolean Expression for the given circuit.

Figure 1

(b) Show whether $\sqrt{17}$ is rational or irrational.

4

(c) Prove that $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p).$

3

5. (a) Let $A = \{a, b, c, d\}$, $B = \{1, 2, 3\}$ and $R = \{(a, 2), (b, 1), (c, 2), (d, 1)\}$. Is R a function? Why?

2

(b) How many permutations are there of the letters, taken all at a time, of the word DISTINCT?

3

(c) Show that in any group of 30 people, we can always find 5 people who were born on the same day of the week.

3

(d) Find how many 4 digit numbers are odd.

2