BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

00095

June, 2018

CS-73: THEORY OF COMPUTER SCIENCE

Time: 3 hours

Maximum Marks: 75

Note: Question number 1 is **compulsory**. Attempt any **three** questions from the rest.

1. (a) Determine a deterministic Finite State
Automaton from the given
non-deterministic Finite State Automaton

 $M = (\{q_0,\,q_1\},\,\{a,\,b\},\,\delta,\,q_0,\,\{q_1\})$ with the state table diagram for δ given below :

δ	а	b
$\mathbf{q_0}$	$\{q_0, q_1\}$	{q ₁ }
q ₁	ф	$\{q_0, q_1\}$

- (b) Obtain the regular expression for the languages given by
 - (i) $L_1 = \{a^{2n} b^{2m+1} \mid n \ge 0, m \ge 0\}$
 - (ii) $L_2 = \{a, bb, aa, abb, ba, bbb, ...\}$

P.T.O.

4

Given a CFG G = (N, T, P, S) with (c) $N = \{s\}, T = \{a, b\}$ and $P = \begin{cases} (1) & S \to aSb \\ (2) & S \to ab \end{cases}.$ the derivation tree and the Obtain language generated L(G). 6 (d) Show that there exists no algorithm for deciding whether any one CFG ambiguous. 6 (e) Prove that the function f(x, y) = max(x, y)is primitive recursive. 6 2. Define a regular set. Using Pumping (a) Lemma. show that the language $L = \{a^n b^k : n > k \text{ and } n \ge 0\}$ is not regular. 8 Tabulate the Chomsky hierarchy with an (b) example for each type of grammar. 7 3. (a) Reduce the given CFG with Productions given by $S \rightarrow abSb \mid a \mid aAb \text{ and }$ $A \rightarrow bS \mid aAAb$ to Chomsky Normal form. 10 (b) Prove that if L is a CFL, then L* is also a CFL. 5 CS-73

2

4. (a)		Construct a Turing Machine that recognizes the language $L = \{0^{n,m} : n, m \ge 0\}$.	
	(b)	Write a short note on Universal Turing Machine.	5
5.	(a)	With a suitable example, explain various asymptotic notations in detail.	10
	(b)	Discuss the applications of finite automata.	5