CS-73

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised) **Term-End Examination** 00699 December, 2017

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks : 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1.	(a)	Find the regular expression for the strings $L = \{baa, abaa, aaabaa \dots \}$	2
	(b)	List three applications of CFG.	3
	(c)	Differentiate between Deterministic Push-down Automata (DPDA) and Non-deterministic Push-down Automata (NPDA).	5
	(d)	Tabulate the Chomsky Hierarchy of Grammars with examples.	5
	(e)	Define Ambiguity in Context-Free Grammar (CFG). Show that the Grammar $S \rightarrow SbS \mid a$ is ambiguous.	5
<u></u>	70	4	~

28-13

- (f) If L_1 and L_2 are two Regular Languages over alphabet Σ , then show that union of L_1 and L_2 (i.e., $L_1 \cup L_2$) is also Regular.
- (g) Construct a Non-deterministic Finite Automata accepting a set of all strings over {a, b} ending in aba. Use it to construct a DFA accepting the same set of strings.
- 2. (a) Construct a DFA with reduced states equivalent to the regular expression $10 + (0 + 11) 0^* 1.$
 - (b) Find the Regular Expression (R.E.) for the following Finite Automata :

- (c) Write a CFG for the Regular Expression r = 0* 1 (0 + 1)*.
- **3.** (a) Construct the Push-down Automata for the following language :

$$\mathbf{L} = \{\mathbf{a}^{n} \mathbf{b}^{n+1} \mid n = 1, 2, 3, ...\}$$

CS-73

5

5

5

5

1

5

5

	(b)	Prove that the language	
		$L = \{0^k k \text{ is prime}\} \text{ is not regular.}$	5
	(c)	Explain a Turing Machine (TM) with the help of an example.	5
4.	(a)	Define NP-class of problems. List three problems which are NP-complete.	5
	(b)	Show that $L = \{a^n b^n c^n n \ge 1\}$ is not context-free.	5
	(c)	Prove that the function $f(x, y) = x * y$ is primitive recursive.	5
5.	(a)	Prove that the Halting Problem of a Turing Machine is undecidable.	5
		Machine is unaccuasic.	0
	(b)	Define the following :	5
		(i) Primitive recursive vs Recursive functions	
		(ii) NP-hard problems	
	(c)	Define O (Big "oh") Notation. Show that	
		$5n^2 + 3n + 2 = O(n^2).$	5