BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

\square
December, 2017

CS-73 : THEORY OF COMPUTER SCIENCE

Time: 3 hours
Maximum Marks : 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the regular expression for the strings

$$
\begin{equation*}
\mathrm{L}=\{\mathrm{baa}, \mathrm{abaa}, \text { aaabaa } . . .\} \tag{2}
\end{equation*}
$$

(b) List three applications of CFG. 3
(c) Differentiate between Deterministic Push-down Automata (DPDA) and Non-deterministic Push-down Automata (NPDA).
(d) Tabulate the Chomsky Hierarchy of Grammars with examples.5
(e) Define Ambiguity in Context-Free Grammar (CFG). Show that the Grammar $\mathrm{S} \rightarrow \mathrm{SbS} \mid \mathrm{a}$ is ambiguous. 5
(f) If L_{1} and L_{2} are two Regular Languages over alphabet Σ, then show that union of L_{1} and L_{2} (i.e., $L_{1} \cup L_{2}$) is also Regular.
(g) Construct a Non-deterministic Finite Automata accepting a set of all strings over $\{a, b\}$ ending in aba. Use it to construct a DFA accepting the same set of strings.
2. (a) Construct a DFA with reduced states equivalent to the regular expression $10+(0+11) 0^{*} 1$.
(b) Find the Regular Expression (R.E.) for the following Finite Automata :

(c) Write a CFG for the Regular Expression

$$
r=0^{*} 1(0+1)^{*} .
$$

3. (a) Construct the Push-down Automata for the following language :

$$
L=\left\{a^{n} b^{n+1} \mid n=1,2,3, \ldots\right\}
$$

(b) Prove that the language

$$
\mathrm{L}=\left\{0^{\mathrm{k}} \mid \mathrm{k} \text { is prime }\right\} \text { is not regular. } 5
$$

(c) Explain a Turing Machine (TM) with the help of an example.

5
4. (a) Define NP-class of problems. List three problems which are NP-complete.

5
(b) Show that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context-free.

5
(c) Prove that the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x} * \mathrm{y}$ is primitive recursive.5
5. (a) Prove that the Halting Problem of a Turing Machine is undecidable.

5
(b) Define the following: 5
(i) Primitive recursive vs Recursive functions
(ii) NP-hard problems
(c) Define 0 (Big "oh") Notation. Show that $5 n^{2}+3 n+2=O\left(n^{2}\right)$. 5

