Introduction of Computer Network

 Introduction to Computer Networks

Data Communication:When we communicate, we are sharing information. This sharing can be local or remote. Between individuals, local communication usually occurs face to face, whileremote communication takes place over distance.

Components:A data communications system has five components.

1. Message. The message is the information (data) to be communicated. Popularforms of information include text, numbers, pictures, audio, and video.

2. Sender. The sender is the device that sends the data message. It can be a computer,workstation, telephone handset, video camera, and so on.

3. Receiver. The receiver is the device that receives the message. It can be a computer,workstation, telephone handset, television, and so on.

4. Transmission medium. The transmission medium is the physical path by whicha message travels from sender to receiver. Some examples of transmission mediainclude twisted-pair wire, coaxial cable, fiber-optic cable, and radio waves

5. Protocol. A protocol is a set of rules that govern data communications. It representsan agreement between the communicating devices. Without a protocol, twodevices may be connected but not communicating, just as a person speaking Frenchcannot be understood by a person who speaks only Japanese.

Data Representation:Information today comes in different forms such as text, numbers, images, audio, andvideo.

Text: In data communications, text is represented as a bit pattern, a sequence of bits (Os orIs). Different sets of bit patterns have been designed to represent text symbols. Each setis called a code, and the process of representing symbols is called coding. Today, theprevalent coding system is called Unicode, which uses 32 bits to represent a symbol or character used in any language in the world. The American Standard Code for Information Interchange (ASCII), developed some decades ago in the United States, nowconstitutes the first 127 characters in Unicode and is also referred to as Basic Latin.

Numbers:Numbersare also represented by bit patterns. However, a code such as ASCII is not usedto represent numbers; the number is directly converted to a binary number to simplify mathematical operations.

Images:Images are also represented by bit patterns. In its simplest form, an image is composedof a matrix of pixels (picture elements), where each pixel is a small dot. The size of thepixel depends on the resolution. For example, an image can be divided into 1000 pixelsor 10,000 pixels. In the second case, there is a better representation of the image (betterresolution), but more memory is needed to store the image.After an image is divided into pixels, each pixel is assigned a bit pattern. The sizeand thevalue of the pattern depend on the image. For an image made of only blackand-white dots (e.g., a chessboard), a I-bit pattern is enough to represent a pixel.If an image is not made of pure white and pure black pixels, you can increase thesize of the bit pattern to include gray scale. For example, to show four levels of grayscale, you can use 2-bit patterns. A black pixel can be represented by 00, a dark gray pixel by 01, a light gray pixel by 10, and a white pixel by 11.There are several methods to represent color images. One method is called RGB,so called because each color is made of a combination of three primary colors: red,green, and blue. The intensity of each color is measured, and a bit pattern is assigned toit. Another method is called YCM, in which a color is made of a combination of three other primary colors: yellow, cyan, and magenta.

Audio:3Audio refers to the recording or broadcasting of sound or music. Audio is by nature different from text, numbers, or images. It is continuous, not discrete. Even when we use a microphone to change voice or music to an electric signal, we create a continuous signal. we learn how to change sound or music to a digital or an analog signal.Video:Video refers to the recording or broadcasting of a picture or movie. Video can either be produced as a continuous entity (e.g., by a TV camera), or it can be a combination of images, each a discrete entity, arranged to convey the idea of motion. Again we can change video to a digital or an analog signal.

 data flow Communication between two devices can be simplex, half-duplex, or full-duple.

Simplex:In simplex mode, the communication is unidirectional, as on a one-way street. Only oneof the two devices on a link can transmit; the other can only receive (see Figure a).Keyboards and traditional monitors are examples of simplex devices. The keyboardcan only introduce input; the monitor can only accept output. The simplex modecan use the entire capacity of the channel to send data in one direction.

Half-Duplex:In half-duplex mode, each station can both transmit and receive, but not at the same time.When one device is sending, the other can only receive, and vice versa The half-duplex mode is like a one-lane road with traffic allowed in both directions.When cars are traveling in one direction, cars going the other way must wait. In a half-duplex transmission, the entire capacity of a channel is taken over by whichever of the two devices is transmitting at the time. Walkie-talkies and CB (citizens band) radiosare both half-duplex systems.The half-duplex mode is used in cases where there is no need for communicationin both directions at the same time; the entire capacity of the channel can be utilized for each direction.

Full-Duplex:In full-duplex both stations can transmit and receive simultaneously.The full-duplex mode is like a tW<D-way street with traffic flowing in both directionsat the same time. In full-duplex mode, si~nals going in one direction share the capacity of the link: with signals going in the other din~c~on. This sharing can occur intwo ways: Either the link must contain two physically separate transmsmission paths, one or sending and the other for receiving; or the capacity of the ch:arillilel is divided between signals traveling in both directions.One common example of full-duplex communication is the telephone network.When two people are communicating by a telephone line, both can talk and listen at the same time.The full-duplex mode is used when communication in both directions is required all the time. The capacity of the channel, however, must be divided between the two directions.