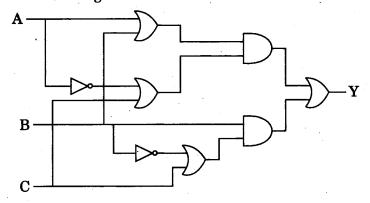
MCA (Revised) / BCA (Revised)

Term-End Examination

03701


June, 2017

MCS-013: DISCRETE MATHEMATICS

Time: 2 hours Maximum Marks: 50 Note: Question number 1 is compulsory. Attempt any three questions from the rest. Negate the following: 1. (a) (i) $(\forall x \exists y) (P(x) \lor Q(y))$ $(\forall x \forall y) (P(x) \land Q(y))$ (ii) Write the contrapositive, converse and **(b)** inverse of the conditional statement "The home team wins whenever it is raining." 2 Prove that if $x^2 - 4 = 0$, then $x \neq 0$ by · (c) contradiction method. 3 (d) Draw Venn Diagram to show the following set operations: 3 A U B (i) (ii) $A \subset B$ (iii) $(A \cup B) \cap C$ MCS-013 1 P.T.O.

- (e) A box contains 10 chocolates. Find the number of n ordered samples of
 - (i) size 3 with replacement, and
 - (ii) size 3 without replacement.
- (f) How many solutions does $x_1 + x_2 + x_3 = 11$ have where x_1 , x_2 and x_3 are non-negative integers with $x_1 \le 3$, $x_2 \le 4$, $x_3 \le 6$?
- 2. (a) Two dice, one red and one white are rolled.

 What is the probability that the white dice turns up a smaller number than the red dice?
 - (b) Four boys picked up 30 mangoes. In how many ways can they divide them if all the mangoes be identical?
 - (c) Find the Boolean expression for the following circuit:

(d) How many words of three distinct letters can be formed from the letters of the word LAND?

2

4

4

3

2

3.	(a)	Find the composition of the following two permutations and show that it is not	
		commutative:	2
		$\mathbf{f} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \mathbf{g} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$	
	(b)	Given S = $\{1, 2,, 10\}$ and a relation R on S where $R = \{(x, y) \mid x + y = 10\}.$	
		Find whether R has the following properties or not?	3
		(i) Reflexive	
		(ii) Transitive	
	•	(iii) Symmetric	
	(c)	Show that the functions $f(x) = x^3$ and	
		$g(x) = x^{1/3}$ for all $x \in R$ are inverse of each other.	3
	(d)	Under what conditions on sets A and B is	
		$\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A} ?$	2
4.	(a)	Find DNF of $\sim (p \lor q) \leftrightarrow (p \lor q)$.	4
	(b)	How many five-digit numbers are even? How many five-digit numbers are composed of only odd digits?	3
	(c)	Draw the circuit for the following Boolean	

logic gates.

expression : Y = AB'C + AC' + B'C, using

3

- **5.** (a) Construct truth table to check whether the following is a tautology or a contingency or a contradiction:
- 4

- (i) $(p \land q) \rightarrow (p \lor q)$
- (ii) $((\sim q \land p) \land q)$
- (b) If the temperature is -6° , then it is cold. Write the
 - (i) converse, and
 - (ii) contrapositive.

2

(c) Show that

$$\frac{1}{1.2} + \frac{1}{2.3} + ... + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$$

by mathematical induction.

1