MCA (Revised) / BCA (Revised)
Term-End Examination
ロ3Pロ1

June, 2017

MCS-013 : DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Negate the following:
(i) $(\forall x \exists y)(P(x) \vee Q(y))$
(ii) $(\forall x \forall y)(P(x) \wedge Q(y))$
(b) Write the contrapositive, converse and inverse of the conditional statement "The home team wins whenever it is raining."2
(c) Prove that if $x^{2}-4=0$, then $x \neq 0$ by contradiction method.
(d) Draw Venn Diagram to show the following set operations :
(i) $\overline{\mathrm{A} \cup B}$
(ii) $\mathrm{A} \subset \mathrm{B}$
(iii) $(A \cup B) \cap C$
(e) A box contains 10 chocolates. Find the number of n ordered samples of
(i) size 3 with replacement, and
(ii) size 3 without replacement.
(f) How many solutions does $x_{1}+x_{2}+x_{3}=11$ have where \dot{x}_{1}, x_{2} and x_{3} are non-negative integers with $\mathrm{x}_{1} \leq 3, \mathrm{x}_{2} \leq 4, \mathrm{x}_{3} \leq 6$?
2. (a) Two dice, one red and one white are rolled. What is the probability that the white dice turns up a smaller number than the red dice?
(b) Four boys picked up 30 mangoes. In how many ways can they divide them if all the mangoes be identical?
(c) Find the Boolean expression for the following circuit :

(d) How many words of three distinct letters can be formed from the letters of the word LAND?
3. (a) Find the composition of the following two permutations and show that it is not commutative :

$$
\mathrm{f}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) \mathrm{g}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right)
$$

(b) Given $S=\{1,2, \ldots, 10\}$ and a relation R on S where

$$
R=\{(x, y) \mid x+y=10\}
$$

Find whether R has the following properties or not?
(i) Reflexive
(ii) Transitive
(iii) Symmetric
(c) Show that the functions $f(x)=x^{3}$ and $g(x)=x^{1 / 3}$ for all $x \in R$ are inverse of each other.
(d) Under what conditions on sets A and B is

$$
\begin{equation*}
\mathbf{A} \times \mathbf{B}=\mathbf{B} \times \mathbf{A} ? \tag{2}
\end{equation*}
$$

4. (a) Find DNF of $\sim(p \vee q) \leftrightarrow(p \vee q)$. 4
(b) How many five-digit numbers are even? How many five-digit numbers are composed of only odd digits?
(c) Draw the circuit for the following Boolean expression : $Y=A B^{\prime} C+A C^{\prime}+B^{\prime} C$, using logic gates.
5. (a) Construct truth table to check whether the following is a tautology or a contingency or a contradiction :
(i) $(\mathbf{p} \wedge q) \rightarrow(p \vee q)$
(ii) $\quad((\sim \mathbf{q} \wedge \mathbf{p}) \wedge \mathbf{q})$
(b) If the temperature is -6°, then it is cold. Write the
(i) converse, and
(ii) contrapositive.
(c) Show that

$$
\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{n .(n+1)}=\frac{n}{n+1}
$$

by mathematical induction. 4

