No. of Printed Pages: 4

MCA (Revised) / BCA (Revised) **Term-End Examination** 17581 December, 2017

MCS-012 : COMPUTER ORGANISATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time : 3 hours

Maximum Marks : 100 (Weightage 75%)

- Note: Question number 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.
- Perform the following : 1. (a) 2+4=6
 - Convert decimal 49.25 to binary and (i) hexadecimal.
 - Convert the following (ii) binary to decimal and hexadecimal :
 - (1) 1100.1101
 - 1010111.01 (2)
 - (b) Α machine evaluation stack uses architecture. Write program for a evaluation of the following expression : 6 $\mathbf{A} = \mathbf{B} * (\mathbf{C} + \mathbf{D}) * \mathbf{E}$

MCS-012

P.T.O.

MCS-012

1

	(c)	Write an assembly language program to find the smallest number in a byte array of size 10 which is stored at location ARRAY. Make suitable assumptions.	8
	(d)	Discuss the use of overlapped register window in RISC architecture.	4
	(e)	Writethecharacteristictableandexcitation tables for the following :(i)JK Flip-flop(ii)D Flip-flop	6
	(f)	How many RAM chips of size 512×8 bit are needed to design a memory of $1 \text{ M} \times 32$ bit?	2
	(g)	 Differentiate between the following : (i) SRAM and DRAM (ii) Hard disk and Magnetic tape storage (iii) Hardware and Software interrupts (iv) Program Counter (PC) and Code Segment Register 	8
2.	(a)	Simplify the boolean function $F = \Sigma$ (0, 2, 4, 6, 8, 10) using a K-map and draw the logic diagram.	5
	(b)	Draw the truth table and logic diagram of a 3-bit synchronous counter using JK flip-flops.	5

MCS-012

- (c) Discuss various elements of an instruction. 4
- (d) What is a micro-operation ? List the sequence of micro-operations in an instruction fetch.
- **3.** (a) Discuss the flag register for the 8086 microprocessor.
 - (b) Consider a computer having 256 word RAM and cache of 16 blocks (block size = 4 words). Where is a memory word location 120 mapped in cache, if
 - (i) direct mapping is used ?
 - (ii) 2-way set associative mapping is used?
 - (c) Explain various cache write policies. 5
 - (d) Explain the DMA technique for I/O operation. 5
- 4. (a) Discuss the use of normalization and biased exponent for floating point representation using a suitable example.
 - (b) Draw the truth table for an 8×3 encoder. 4
 - (c) Explain the working of a microprogrammed control unit with the help of a diagram. 10

MCS-012

P.T.O.

6

4

6

6

3

- 5. (a) Explain the register addressing mode and indirect addressing mode in the 8086 microprocessor.
 - (b) Differentiate between the following : 5
 - (i) PUSH and PUSHF instructions
 - (ii) AAA and DAA instructions
 - (c) What is a RAID ? Explain various techniques used in a RAID to enhance reliability. 5
 - (d) Explain the use of different segments in 8086 assembly language programming.

5

5