BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

$\square 3 \operatorname{Ban}$
Term-End Examination
December, 2017

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time: 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Answer any three questions from the rest.

1. (a) Arrange the following functions in increasing order of growth rates :
(i) $\mathrm{O}(\log \mathrm{n})$
(ii) $\mathrm{O}\left(\mathrm{n}^{3}\right)$
(iii) $O\left(5^{n}\right)$
(iv) $O(n \log n)$
(b) What is an Algorithm ? Briefly explain the meaning of complexity of an algorithm.
(c) Define O (big oh) notation. Prove or disprove the following :

$$
2 n^{2}+3 n+1=O\left(n^{2}\right)
$$

(d) Write a binary search algorithm and analyse its time complexity in best case and in worst case.
(e) Create an adjacency matrix for the following graph :

Figure 1
2. (a) Write an algorithm for Depth-First Search (DFS) and traverse the following graph using DFS : (Starting vertex is A)

Figure 2
(b) Explain the difference between directed and undirected graphs.
3. (a) Apply the Quick-sort algorithm to sort the following list :

$$
5,9,8,4,2,15,6
$$

(b) Find the minimum cost spanning tree from the following graph using Kruskal's algorithm :

Figure 3
4. (a) By using mathematical induction, prove that

$$
P(n)=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

(b) Consider the following fractional Knapsack problem :
$\mathrm{M}=15$ and

$$
\begin{aligned}
& \left(P_{1}, P_{2}, P_{3}\right)=(25,24,15) \text { and } \\
& \left(W_{1}, W_{2}, W_{3}\right)=(18,15,10)
\end{aligned}
$$

Show the running of the greedy algorithm for the fractional Knapsack problem.

5. Explain the following terms with examples :

(a) Combinatorial Problem
(b) Complete Graph
(c) Backtracking
(d) Asymptotic Notations

