No. of Printed Pages : 3

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

01470

June, 2017

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

Maximum Marks: 75

Note : Question number **1** is **compulsory**. Attempt any **three** questions from the rest.

1. (a) Write down the regular expression for the language

$$L = \{a^{2n} b^{2m+1} | n \ge 0, m \ge 0\}.$$

- (b) List two main differences between DFA (Deterministic Finite Automata) and NFA (Non-deterministic Finite Automata)
- (c) If L is a regular language, then show that the complement of L that is \overline{L} is also regular.
- (d) Show that the grammar

 $S \rightarrow a \mid abSA \mid aAb$

 $A \rightarrow bS \mid aAAb$

is ambiguous.

CS-73

1

P.T.O.

5

3

5

	(e)	Construct a Finite automata for the language $L = \{a^n b^m \mid m, n \ge 1\}.$	5	
· •	(f)	Define Type-2 grammar. Find the highest type that can be applied to the following productions: 5		
		(i) $S \rightarrow Aa$, $A \rightarrow c \mid Ba B \rightarrow abc$	ξ. ·	
		(ii) $S \rightarrow ASb \mid d A \rightarrow aA$		
	(g)	Explain any three uses of regular expressions.	5	
2.	(a)	Design a TM that accepts		
		$\mathbf{L} = \{ 0^n \ 1^n \ ; \ n \ge 1 \}.$	5	
	(b)	Define O ("Big-O") notation. Show that		
	×	$3x^2 + 2x + 5 = O(x^2).$	5	
	(c)	Construct a PDA to accept		
		$\mathcal{L} = \{ \mathbf{w} \in \mathbf{w}^{\mathbf{R}} \mid \mathbf{w} \in (0, 1)^* \}$		
		where w ^R is the reverse of w.	5	
3.	(a)	Show that		
		$\mathcal{L} = \{0^i 1^i \mid i \ge 1\}$		
	4	is not regular.	5	
а.	(b)	HALT _{TM} = $\{(M, w) \text{The Turing machine} \}$		
		halts on Input w } is undecidable.	5	
· ·	(c)	Define pumping lemma for context-free grammar.	5	

CS-73

2

(a)

Find out DFA for the machine

$$\mathbf{M} = (\{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}, \{\mathbf{a}, \mathbf{b}\}, \delta, \mathbf{q}_0, \{\mathbf{q}_2\})$$

for the table given below :

Σ States	a	b
$\rightarrow q_0$	q ₀ , q ₁	q ₀
q ₁	q ₀	q ₁
9 ₂		q ₀ , q ₁

Find the regular expression over $\Sigma = \{a, b\}$ **(b)** that accepts the following sets :

- All strings over Σ that start and end (i) with different alphabets.
- All strings of a's and b's in which a is (ii) divisible by 3.
- Write a Regular grammar for the language (c) $(ab \cup aba)^*$.
- **Define the following :** (a) 5.
 - **Application of Finite Automata** (i)
 - NP-complete problems (ii)
 - Show that $f(x, y) = x^y$ is a primitive (b) recursive function.
 - If L_1 and L_2 are context-free languages, (c) then show that $L_1 \cdot L_2$ is also a context-free language.

3

CS-73

5

5

5

5

5

2,500

5