BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

$\square 14 \square \square$
June, 2017

CS-73 : THEORY OF COMPUTER SCIENCE

Time: 3 hours

Maximum Marks : 75

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Write down the regular expression for the language

$$
\begin{equation*}
\dot{\mathrm{L}}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{~b}^{2 \mathrm{~m}+1} \cdot \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\} \tag{2}
\end{equation*}
$$

(b) List two main differences between DFA (Deterministic Finite Automata) and NFA (Non-deterministic Finite Automata)
(c) If L is a regular language, then show that the complement of L that is \bar{L} is also regular.
(d) Show that the grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{a}|\mathrm{abSA}| \mathrm{aAb} \\
& \mathrm{~A} \rightarrow \mathrm{bS} \mid \mathrm{aAAb}
\end{aligned}
$$

is ambiguous.
(e) Construct a Finite automata for the language $L=\left\{a^{n} b^{m} \mid m, n \geq 1\right\}$.
(f) Define Type-2 grammar. Find the highest type that can be applied to the following productions:
(i) $\mathrm{S} \rightarrow \mathrm{Aa}, \mathrm{A} \rightarrow \mathrm{c} \mid \mathrm{Ba} \quad \mathrm{B} \rightarrow \mathrm{abc}$
(ii) $\mathrm{S} \rightarrow \mathrm{ASb} \mid \mathrm{d} \quad \mathrm{A} \rightarrow \mathrm{aA}$
(g) Explain any three uses of regular expressions.
2. (a) Design a TM that accepts

$$
\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} ; \mathrm{n} \geq 1\right\}
$$

(b) Define O ("Big-O") notation. Show that

$$
\begin{equation*}
3 x^{2}+2 x+5=O\left(x^{2}\right) \tag{5}
\end{equation*}
$$

(c) Construct a PDA to accept

$$
\mathscr{L}=\left\{\mathbf{w} \mathbf{c} \mathbf{w}^{R} \mid w \in(0,1)^{*}\right\}
$$

where w^{R} is the reverse of w.
3. (a) Show that

$$
\mathcal{L}=\left\{0^{i} 1^{i} \mid i \geq 1\right\}
$$

is not regular.
(b) $\operatorname{HALT}_{T M}=\{(\mathrm{M}, \mathrm{w}) \mid$ The Turing machine halts on Input w $\}$ is undecidable.
(c) Define pumping lemma for context-free grammar.
4. (a) Find out DFA for the machine

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, \delta, q_{0},\left\{q_{2}\right\}\right)
$$

for the table given below :

States	Σ	a
$\rightarrow q_{0}$	q_{0}, q_{1}	q_{0}
q_{1}	q_{0}	q_{1}
q_{2}	-	$\mathrm{q}_{0}, \mathrm{q}_{1}$

(b) Find the regular expression over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ that accepts the following sets :
(i) All strings over Σ that start and end with different alphabets.
(ii) All strings of a's and b's in which a is divisible by 3 .
(c) Write a Regular grammar for the language (ab $\cup a b a)^{*}$.
5. (a) Define the following:
(i) Application of Finite Automata
(ii) NP-complete problems
(b) Show that $f(x, y)=x^{y}$ is a primitive recursive function.
(c) If L_{1} and L_{2} are context-free languages, then show that $L_{1} . L_{2}$ is also a context-free language.

