No. of Printed Pages: 5

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

June. 2017

UCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks : 100

Note :

04872

- (i) Calculator, including scientific, is allowed during examination. However, each step of numerical calculation should be explicitly carried out by the examinee.
- (ii) Question no. 1 is compulsory. Attempt any three from the rest of the four questions.
- 1. (a) Calculate x y, for the following two floating-point numbers :

 $x = 0.8706 \times 10^{-3}, y = 0.7604 \times 10^{-2}$

- (b) Find the product of x and y given in (a) above.
- (c) Explain what is 'overflow', with a suitable example of multiplication.

1

BCS-054

P.T.O.

3

3

(d) Write the following system of linear equations in matrix form :

3

3

4

4

3

3

$$-9x + 17y = -8$$

 $12x = 23$

(e) Solve the following system of linear equations using Gauss elimination method : 4

> -7x + 5y = 32x - 8y = -12

(f) Find an interval in which the following equation has a root :

 $2x^2 + 6x - 7 = 0$

- (g) Write briefly the steps of the Secant Method to find out the roots of an equation.
- (h) Write the expressions which are obtained by applying each of the following operators to f(x):
 - (i) ∇
 - (ii) ∆
- (i) Write Δ in terms of each of (i) E and (ii) δ separately.
- (j) Construct the difference table for the following data :

x	2	7	11	17	23
f(x)	17	32	49	73	143

BCS-054

- (k) State the following two formulae for interpolation (for equal intervals):
 - (i) Stirling's Formula
 - (ii) Newton's Backward Difference Formula
- (1) Explain the concepts of 'order' and 'degree' of a differential equation, with an example.
- (a) Using either Gauss-Jacobi iterative method or Gauss elimination method with partial pivoting, solve the following system of linear equations:

 $3\mathbf{x} - 5\mathbf{y} + 6\mathbf{z} = 11$

5x - 11z = -28

2v + 9z = 31

(b)

(a)

(b)

- Discuss the merits and demerits of direct approach over iterative approach for solving a system of linear equations.
- 3.

2.

For $f(x) = 4x^3 - 3x^2 + 8$, find $\Delta^3 f(x)$ in terms of h, where h is an equally spaced interval. Estimate the missing term in the following data using FD (Forward Difference) assuming that the data is a valid representation of a polynomial of degree 3.

x	1.00	1.20	1.40	1.60	1.80
f(x)	2.7183	?	4 ·0552	4 ∙9530	6.049

3

BCS-054

P.T.O.

4

2

15

5

8

4. Attempt any *two* parts of (a), (b) and (c) below :

Approximate the value of $\int \frac{dx}{4-3x}$ using **(a)**

> the Trapezoidal rule, using five equal parts of the interval [3, 4].

- Using Euler's method, tabulate the solution **(b)** of the Initial Value Problem (IVP) $y' = -3ty^2$, y(0) = 1 in the interval [0, 1], using h = 0.2. 10
- From the data given in the table below, (c) find $y' = \frac{dy}{dx}$ at x = 2.75 using Forward

Difference.

X.	1.5	2∙0	2.5	3∙0	3.5
$\mathbf{y} = \mathbf{f}(\mathbf{x})$	1.2247	1.4142	1.5811	1.7320	1.8708

- 8-decimal (\mathbf{a}) Using digit floating-point representation (4 digits for mantissa, 2 digits for exponent, and one each for sign of exponent and mantissa), represent the numbers following (use chopping, if required):
 - (i) - 76.384
 - (ii) 0.00079542

BCS-054

5.

10

10

- (b) Is '+' associative when $a = 0.2134 \times 10^5$; $b = 0.2354 \times 10^3$ and $c = -0.2142 \times 10^1$ are three floating-point numbers to be added, in this order ? You are required to find out whether (a + b) + c = a + (b + c).
- (c) Explain the following two concepts with a suitable example for each :
 - (i) Chopping error
 - (ii) Rounding error

BCS-054

3,500

6