No. of Printed Pages : 3

MCA (Revised)

Term-End Examination

June, 2017

03512

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours

Maximum Marks : 100

- Note: Question no. 1 is compulsory. Attempt any three from the remaining questions.
- 1. (a) Use mathematical induction to prove the following expression :

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 1$$

(b) Defin

Define Big-O and Big Omega notation, and prove that

 $f(n) = 3 \log n + \log \log n = O(\log n). \qquad 6$

- (c) Write a regular expression to generate strings of odd lengths over the alphabet $\Sigma = \{a, b\}.$
- (d) Solve the following recurrence equations :
 - (i) T(n) = 2T(n/2) + n
 - (ii) T(n) = T(n/2) + 1
 - (iii) T(n) = T(n/2) + n

MCS-031


P.T.O.

5

5

9

- (e) Write an algorithm for Merge Sort. Analyze its time complexity.
- (f) What is the essence of Greedy technique ? Give an example.
- **2.** (a) Obtain the DFS traversal for the following graph :

Identify the tree edges, back edges and cross edges.

- (b) Explain any three applications of DFS traversal. 6
- (c) Explain Kruskal's algorithm to compute the minimum cost spanning tree.
- 3. (a) Explain how dynamic programming can be used to solve matrix chain multiplication.
 Apply the algorithm to multiply the following :

3 matrices, $< M_1$, M_2 , $M_3 >$ with dimensions < (15, 3), (3, 10), (10, 2) >

2

10

5

6

10

8

Give a divide and conquer based algorithm to find the ith smallest element in an array of size n. Trace your algorithm to find 3rd smallest in the array

 $A = \{10, 2, 5, 15, 50, 6, 20\}.$

4. (a)

(b)

Define Regular Languages. Write regular expressions for the following :

- (i) Strings of even length over the alphabet $\Sigma = \{a, b\}.$
- (ii) Strings with odd number of a's and even number of b's over the alphabet Σ = {a, b}.
- (b) Explain Chomsky's classification for grammars.

(c) Show that the following CFG is ambiguous :

- $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow a/b$
- **5.** (a) Define a Turing machine.
 - (b) If L_1 and L_2 are context-free languages, then prove that $L_1 \cup L_2$ is also context-free. 5
 - (c) Explain the term 'Polynomial time reduction'. Explain how the clique problem can be transformed to the vertex cover problem.

MCS-031

3

3,500

10

9

6

5

5

10