No. of Printed Pages : 3

MCS-031

MCA (Revised)
Term-End Examination

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three from the remaining questions.

1. (a) Use mathematical induction to prove the following expression :

$$
\sum_{i=1}^{n} 2^{i}=2^{n+1}-1
$$

(b) Define Big-O and Big Omega notation, and prove that

$$
\begin{equation*}
f(n)=3 \log n+\log \log n=O(\log n) \tag{6}
\end{equation*}
$$

(c) Write a regular expression to generate strings of odd lengths over the alphabet $\Sigma=\{a, b\}$.
(d) Solve the following recurrence equations : 9
(i) $T(n)=2 T(n / 2)+n$
(ii) $T(n)=T(n / 2)+1$
(iii) $T(n)=T(n / 2)+n$
(e) Write an algorithm for Merge Sort. Analyze its time complexity.
(f) What is the essence of Greedy technique? Give an example.
2. (a) Obtain the DFS traversal for the following graph :

Identify the tree edges, back edges and cross edges.
(b) Explain any three applications of DFS traversal.
(c) Explain Kruskal's algorithm to compute the minimum cost spanning tree.
3. (a) Explain how dynamic programming can be used to solve matrix chain multiplication. Apply the algorithm to multiply the following :

$$
\begin{aligned}
& 3 \text { matrices, }<\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}>\text { with } \\
& \text { dimensions }<(15,3),(3,10),(10,2)>
\end{aligned}
$$

(b) Give a'divide and conquer based algorithm to find the $i^{\text {th }}$ smallest element in an array of size n. Trace your algorithm to find $3^{\text {rd }}$ smallest in the array

$$
\begin{equation*}
A=\{10,2,5,15,50,6,20\} \tag{10}
\end{equation*}
$$

4. (a) Define Regular Languages. Write regular $\begin{aligned} & 9 \\ & \text { expressions for the following: }\end{aligned}$
(i) Strings of even length over the alphabet $\Sigma=\{a, b\}$.
(ii) Strings with odd number of a's and even number of b's over the alphabet $\Sigma=\{a, b\}$.
(b) Explain Chomsky's classification for grammars.
(c) Show that the following CFG is ambiguous:

$$
\begin{aligned}
& \mathbf{E} \rightarrow \mathbf{E}+\mathbf{E} \\
& \mathbf{E} \rightarrow \mathbf{E}^{*} \mathbf{E} \\
& \mathbf{E} \rightarrow \mathbf{a} / \mathbf{b}
\end{aligned}
$$

5. (a) Define a Turing machine.
(b) If L_{1} and L_{2} are context-free languages, then prove that $L_{1} \cup L_{2}$ is also context-free.5
(c) Explain the term 'Polynomial time reduction'. Explain how the clique problem can be transformed to the vertex cover problem.10
