No. of Printed Pages : 3

RCSE-001

Ph.D. IN COMPUTER SCIENCE (PHDCS)

Term-End Examination

10440

December, 2017

RCSE-001 : DATA MINING

Maximum Marks : 100 (Weightage : 50%)

Note: Question no. 1 is compulsory. Answer any three questions from the rest.

1. (a)	What is a Transactional database ? How are transactional databases used to support online and real-time systems ?	10
(b)	Define a Data Warehouse (DW). What are the various components of a DW system ? Draw and explain its architecture.	10
(c)	Discuss ID3, C4.5 and CART algorithms in detail. Give suitable example for each.	10
(d)	Consider the following data for the attribute "age" in increasing order : 13, 15, 16, 19, 20, 21, 22, 22, 25, 25, 25, 30, 33, 35, 35, 35, 36, 40, 45, 46, 52, 70 Use "Smoothing by bin" means to smooth these data, using a bin depth of 3. Illustrate your steps. Also, comment on the effect of this technique for the given data.	10

RCSE-001

- 2. (a) Compare and contrast between the following :
 - (i) Classification and Prediction models

3

3

4

10

10

10

- (ii) Supervised and Unsupervised learning
- (iii) Lazy learner and Eager learner algorithms
- (b) Write the Back Propagation algorithm.
 Explain how the algorithm leads to the learning of a neural network. 10
- 3. (a) Suppose you are the Vice President of an e-commerce company. Describe any three different ways you will tend to analyze the sales during a festive season. What will be your business dimensions ? Also, find out the hierarchies and categories. Draw an Information Package Diagram (IPD).
 - (b) Convert the above IPD (Q. 3(a)) to STAR schema. 10
- (a) What is Data Mining ? Explain the areas of applications of data mining. Describe the stages in KDD.
 - (b) Explain the Apriori algorithm for finding frequent item sets by confined candidate generation.

RCSE-001

2

5.	Wh	at are the value ranges of the following		
	normalization methods ?			
	(a)	Min-max Normalization	5	
	(b)	Z-score Normalization	5	
	(c)	Z-score Normalization using the Mean Absolute Deviation instead of Standard		
		Deviation	5	
	(d)	Normalization by Decimal Scaling	5	

- F