No. of Printed Pages: 3

MCS-041

MCA (Revised)

Term-End Examination

□□18□ December, 2017

MCS-041: OPERATING SYSTEMS

Time: 3 hours Maximum Marks: 100

(Weightage: 75%)

Note: Question no. 1 is **compulsory**. Attempt any **three** questions from the rest.

- (a) Describe the implementation of IPC using shared memory and message passing. Explain with neat diagrams.
 - (b) Suppose the following jobs arrive for processing at the times indicated. Each job will run the listed amount of time.

Job	Arrival Time	CPU Burst Time		
1	0.0	8		
2	0.4	4		
3	1.0	1		

10

		execution of these jobs, using the non-pre-emptive FCFS and SJF scheduling algorithms.	
		(ii) What is the turn around time and waiting time of each job for the above algorithms?	
	(c)	Explain various Multiprocessor Interconnection Networks.	10
	(d)	Differentiate between SCAN and C-SCAN disk scheduling algorithms. Using an example, explain the steps. Also give a brief note on RAID.	10
2.	(a)	Explain the structure of Unix and Windows Operating Systems.	10
	(b)	Explain the different approaches for implementing mutual exclusion in a distributed environment.	10
3.	(a)	Characterize deadlock in a system. Using a resource allocation graph, illustrate a deadlock and explain in detail.	10
	(b)	Explain the design goals and design issues involved in a distributed system.	10

(i) Give a Gantt chart illustrating the

4.	(a)	Descri Windo			У	manager	nent	in	10
	(b)	the l	ogical	struc	cture	s used for of a ructure o	direct	ory.	10
5.	(a)								10
		(i)		nal mentati	a ion	nd	Exter	mal	
		(ii)		and p entatio	•	g and	Dem	and	
		(iii)	Fixed	l and V	ariab	le partiti	on		
		(iv)	First	fit, Bes	st fit a	and Wors	t fit		
	(b)	Explain Take-Grant Model for security a protection of an operating system.					and	10	