MCA (Revised)

Term-End Examination

$\square \square \square \square \square$ December, 2017

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
 Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Using induction, verify that
$\sqrt{5} \mathrm{f}_{\mathrm{n}}=\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{n}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}, \mathrm{n} \geq 1$
where $f_{n}=f_{n-1}+f_{n-2}$ and $f_{0}=0$ and $f_{1}=1 . \quad 5$
(b) Determine the number of subsets of a set of n elements, where $\mathrm{n} \geq 0$.
(c) Find the sum of the series
$\sum_{k=0}^{\infty} \frac{(k+1)^{2}}{\angle k}=\frac{1^{2}}{\angle 0}+\frac{2^{2}}{\angle 1}+\ldots+\frac{(n+1)^{2}}{\angle n}+\ldots$
using exponential generating functions.
(d) Take three vertices x, y, z and draw all possible $(3,2)$ graphs on these vertices.
2. (a) Find the number of integer solutions of the linear equation

$$
a_{1}+a_{2}+\ldots+a_{k}=n
$$

using generating function techniques, when $\mathrm{a}_{\mathrm{i}} \geq 0$.
(b) State and prove the handshaking theorem.
3. (a) Solve the recurrence relation $a_{n+1}^{2}=5 a_{n}^{2}$ where $a_{n}>0$ and $a_{0}=2$.
(b) Construct a 5 regular graph on 10 vertices. 5
4. (a) Solve the linear recurrence
$a_{n}-a_{n-1}=f_{n+2} \cdot f_{n-1} \quad n \geq 1$
where $a_{0}=2$ and f_{i} denotes the $i^{\text {th }}$ Fibonacci number.
(b) Show that for a subgraph H of a graph G, $\Delta(\mathrm{H}) \leq \Delta(\mathrm{G})$.
5. (a) Find all the graphs that have edge chromatic number 1.
(b) Show that C_{6} is bipartite and $\mathrm{K}_{\mathbf{3}}$ is not bipartite.

