No. of Printed Pages : 2

MCS-033

MCA (Revised) Term-End Examination

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

- Note: Question no. 1 is compulsory. Attempt any three questions from the rest.
- 1. (a) Using induction, verify that

$$\sqrt{5} f_n = \left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n, n \ge 1$$

where $f_n = f_{n-1} + f_{n-2}$ and $f_0 = 0$ and $f_1 = 1$. 5

- (b) Determine the number of subsets of a set of n elements, where $n \ge 0$.
- (c) Find the sum of the series

$$\sum_{k=0}^{\infty} \frac{(k+1)^2}{\underline{/k}} = \frac{1^2}{\underline{/0}} + \frac{2^2}{\underline{/1}} + \dots + \frac{(n+1)^2}{\underline{/n}} + \dots$$

using exponential generating functions. 5

5

- (d) Take three vertices x, y, z and draw all possible (3, 2) graphs on these vertices.
- (a) Find the number of integer solutions of the linear equation

 $a_1 + a_2 + \dots + a_k = n$,

using generating function techniques, when $a_i \ge 0$.

- (b) State and prove the handshaking theorem. 5
- 3. (a) Solve the recurrence relation $a_{n+1}^2 = 5a_n^2$ where $a_n > 0$ and $a_0 = 2$. 5
 - (b) Construct a 5 regular graph on 10 vertices. 5

4. (a) Solve the linear recurrence

$$a_n - a_{n-1} = f_{n+2} \cdot f_{n-1}$$
 $n \ge 1$
where $a_0 = 2$ and f_i denotes the *i*th
Fibonacci number. 5

(b) Show that for a subgraph H of a graph G, $\Delta(H) \leq \Delta(G).$

5. (a) Find all the graphs that have edge chromatic number 1. 5

(b) Show that C_6 is bipartite and K_3 is not bipartite.

2.

5

5

5

5