MCA（Revised）／BCA（Revised）

ロロB9ロ

Term－End Examination
 Term－End Examination

December， 2017December， 2017
MCS－013 ：DISCRETE MATHEMATICS
Time： 2 hours
Maximum Marks ： 50

Note：Question number 1 is compulsory．Attempt any three questions from the rest．

1．（a）Translate the statement
＂The sum of two positive integers is
positive＂into a logical expression．
（b）Write the negation of
＂If x is an integer then x is a rational
number．＂
（c）Prove that if x^{2} is an even integer，then x is an even integer by contraposition method． 3
（d）Draw a Venn Diagram to show the following set operations ：
（i） $\mathrm{A}-\mathrm{B}$
（ii）$(A \cap B) \cup C$
（iii）$(A \cap B) \cap C$
(e) A box contains 5 balls. Find the number of ordered samples of size 2
(i) with replacement, and
(ii) without replacement.
(f) Check whether the function $f(x)=x+1$ is one-one or not.
(g) How many numbers from 0 to 999 are not divisible by either 5 or 7 ?
2. (a) A and B are mutually exclusive events such that $P(A)=0.3$ and $P(B)=0.4$. What is the probability that either A or B does not occur?
(b) How many six-digit numbers contain exactly three different digits ?
(c) In how many ways can an employer distribute 100 one-rupee notes among 6 employees so that each gets at least one note?
(d) How many words can be formed from A, B, C, using the letter A thrice, the letter B twice and the letter C once?2
3. (a) Explain Pascal's Triangle.

2
(b) Given $\mathrm{A}=\{1,2,3,4\}$ and Relation R as $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$. Examine whether R is
(i) Symmetric
(ii) Reflexive
(iii) Transitive 3
(c) Let $f: R \rightarrow R$ defined by $f(x)=3 x-4$. Find f^{-1}.
(d) Let $A=\{a, b, c, d\}, B=\{1,2,3\}$, $R=\{(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 2),(\mathrm{d}, 1)\}$.
Is R a function? Why?
4. (a) Find CNF of $\sim(p \vee q) \leftrightarrow(p \wedge q)$.
(b) What is a proper subset ? Write the number of proper subsets of the set $\{a, b, c, d\}$.
(c) Draw the circuit for the following Boolean expression using logic gates
$Y=A^{\prime} B C+A^{\prime} B^{\prime}+A B C^{\prime}$.
5. (a) Construct a truth table to check whether the following is a tautology or a contingency or a contradiction :
(i) $\mathbf{p} \rightarrow(\mathbf{q} \rightarrow \mathrm{p})$
(ii) $p \wedge(q \wedge \sim p)$
(b) 'If today is a holiday then I will go for a movie.' Write
(i) Inverse
(ii) Contrapositive 2
(c) Show that $n^{2}>2 n+1$ for $n \geq 3$ by Mathematical Induction.

