No. of Printed Pages: 3

MCA (Revised) / BCA (Revised)

Term-End Examination

December, 2017

00890

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a)	Translate the statement	
	"The sum of two positive integers is positive" into a logical expression.	2
(b)	Write the negation of	
	"If x is an integer then x is a rational number."	2
(c)	Prove that if x^2 is an even integer, then x is	
	an even integer by contraposition method.	3
(d)	Draw a Venn Diagram to show the	
	following set operations :	3
	(i) $\mathbf{A} - \mathbf{B}$	
	(ii) $(\mathbf{A} \cap \mathbf{B}) \cup \mathbf{C}$	
	(iii) $(\mathbf{A} \cap \mathbf{B}) \cap \mathbf{C}$	
MCS-013	1 P.T	.0.

(e)	A box contains 5 balls. Find the number of ordered samples of size 2	
	(i) with replacement, and	
	(ii) without replacement.	4
(f)	Check whether the function $f(x) = x + 1$ is one-one or not.	2
(g)	How many numbers from 0 to 999 are not divisible by either 5 or 7 ?	4
2. (a)	A and B are mutually exclusive events such that $P(A) = 0.3$ and $P(B) = 0.4$. What is the probability that either A or B does not occur?	3
(b)	How many six-digit numbers contain exactly three different digits ?	2
(c)	In how many ways can an employer distribute 100 one-rupee notes among 6 employees so that each gets at least one note ?	3
(d)	How many words can be formed from A, B, C, using the letter A thrice, the letter B twice and the letter C once ?	2
3. (a)	Explain Pascal's Triangle.	2
(b)	Given A = $\{1, 2, 3, 4\}$ and Relation R as $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)\}$. Examine whether R is	
	(i) Symmetric	
	(ii) Reflexive	
	(iii) Transitive	3
MCS-013	2	

ı

	(c)	Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 3x - 4$. Find f^{-1} .	3
	(d)	Let $A = \{a, b, c, d\}, B = \{1, 2, 3\}, R = \{(a, 2), (b, 1), (c, 2), (d, 1)\}.$ Is R a function ? Why ?	2
4.	(a)	Find CNF of $\sim (p \lor q) \leftrightarrow (p \land q)$.	4
	(b)	What is a proper subset ? Write the number of proper subsets of the set {a, b, c, d}.	3
	(c)	Draw the circuit for the following Boolean expression using logic gates	
		$\mathbf{Y} = \mathbf{A'BC} + \mathbf{A'BC'} + \mathbf{ABC'}.$	3
5.	(a)	Construct a truth table to check whether the following is a tautology or a contingency or a contradiction	4
		(i) $p \rightarrow (q \rightarrow p)$ (ii) $p \wedge (q \wedge \sim p)$	1
	(b)	'If today is a holiday then I will go for a movie.' Write	
		(i) Inverse	
		(ii) Contrapositive	2
	(c)	Show that $n^2 > 2n + 1$ for $n \ge 3$ by Mathematical Induction.	4

MCS-013

11,000