CS-71

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised) 01710 Term-End Examination December, 2017

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks: 75

Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Use of scientific calculator is permitted.

1. (a) Round off the following numbers to two (i) decimal places : 90.9986; 56.1081; 95.945; 10.0062; 105.5546 For each of the following numbers, (ii) find the number of significant digits : 2.64×10^{24} ; 0.2370; 6.320; 6.032; 0.000965015 If N = $\frac{4x^2y^3}{4x^2y^3}$ and the errors in x, y and z **(b)** are 0.1, 0.05 and 0.15 respectively. compute the maximum relative error in N. when x = y = z = 1. 5

1

CS-71

P.T.O.

(c) Solve the following system of equations by using the Gauss-elimination method :

$$3x + 4y - z = 8$$

- $2x + y + z = 3$
 $x + 2y - z = 2$

(d) Find the real root of the equation

 $x e^{x} - \cos x = 0$

by the Newton-Raphson method, correct to three decimal places.

(i)
$$\mu^2 = 1 + \frac{1}{4} \delta^2$$

(ii) $\nabla^2 = 1 - 2E^{-1} + E^{-2}$

 $x e^x = 2$

by iterative method, correct to 3 decimal places.

2. (a) Apply Lagrange's interpolation formula to find f(x) from the following data:

x	0	1	4	5
f(x)	4	3	24	39

Also compute f(2.5).

5

5

5

5

5

(b) Using Newton's forward interpolation formula on the table of values given below, obtain the value of y when x = 1.4:

x	1.1	1.3	1.5	1.7	1.9
у	0.21	0.69	1.25	1.89	2 ·61

 (c) A river is 80 m wide. The depth d in metres at a distance x metres from one bank is given by the following table :

x	d
0	0
10	4
20	7
30	9
40	12
50	15
60	14
70	8
80	3

Find approximately the area of the cross-section by using Simpson's $\frac{1}{3}$ rule. 5

CS-71

P.T.O.

5

3

3. (a) Find a root of the equation

 $\mathbf{x}^3 - 3\mathbf{x} - 5 = 0$

correct to three decimals, using the Bisection method.

5

5

5

5

5

- (b) Find a root of the equation $x \log_{10} x = 1.2$ correct to three decimals, using the Regula-Falsi method.
- (c) Solve the following system of equations by using Jacobi's iteration method :

$$8x + y + z = 8$$

 $2x + 4y + z = 4$
 $x + 3y + 5z = 5$

4. (a) Evaluate $\int_{1}^{3} \frac{dx}{1+x}$ by subdividing the

interval (1, 3) into 8 equal parts, and using Trapezoidal rule.

(b) Solve the following system of equations by using Cramer's rule :

$$x_1 - 2x_2 - 3x_3 = 3$$

 $x_1 + x_2 - x_3 = 5$
 $3x_1 + 2x_2 = -4$

CS-71

(c) Using the Runge-Kutta method of fourth order, compute y(0.1), given that

$$\frac{dy}{dx} = xy + y^2$$
, $y(0) = 1$. 5

- 5. (a) If one root of the equation $x^4 + x^3 - 25x^2 + 41x + 66 = 0$ is $(3 + i\sqrt{2})$, then find out the other roots.
 - (b) Find a real root of the equation

$$x^3 - 4x - 9 = 0$$

by using the Secant method.

(c) Using Euler's method, find an approximate value of y corresponding to x = 0.1, given that $\frac{dy}{dx} = x + y + xy$, and y(0) = 1.

Take h = 0.05.

5

5

5