BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

D171 Term-End Examination December, 2017

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours

Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Use of scientific calculator is permitted.

1. (a) (i) Round off the following numbers to two decimal places :
$90.9986 ; 56 \cdot 1081 ; ~ 95.945 ; 10 \cdot 0062$; $105 \cdot 5546$
(ii) For each of the following numbers, find the number of significant digits :
$2.64 \times 10^{24} ; 0.2370 ; 6.320 ; 6.032$; 0.00096501
(b) If $N=\frac{4 x^{2} y^{3}}{z^{4}}$ and the errors in x, y and z are $0.1,0.05$ and 0.15 respectively, compute the maximum relative error in N, when $x=y=z=1$.
(c) Solve the following system of equations by using the Gauss-elimination method :

$$
\begin{aligned}
& 3 x+4 y-z=8 \\
& -2 x+y+z=3 \\
& x+2 y-z=2
\end{aligned}
$$

(d) Find the real root of the equation

$$
x e^{x}-\cos x=0
$$

by the Newton-Raphson method, correct to three decimal places.
(e) Prove that:
(i) $\mu^{2}=1+\frac{1}{4} \delta^{2}$
(ii) $\nabla^{2}=1-2 \mathrm{E}^{-1}+\mathrm{E}^{-2}$
(f) Find the real root of the equation

$$
x e^{x}=2
$$

by iterative method, correct to 3 decimal places.
2. (a) Apply Lagrange's interpolation formula to find $f(x)$ from the following data :

x	0	1	4	5
$f(x)$	4	3	24	39

Also compute f(2.5).
(b) Using Newton's forward interpolation formula on the table of values given below, obtain the value of y when $x=1 \cdot 4$:

x	1.1	1.3	1.5	1.7	1.9
y	0.21	0.69	1.25	1.89	2.61

(c) A river is 80 m wide. The depth d in metres at a distance x metres from one bank is given by the following table :

x	d
0	0
10	4
20	7
30	9
40	12
50	15
60	14
70	8
80	3

Find approximately the area of the cross-section by using Simpson's $\frac{1}{3}$ rule.
3. (a) Find a root of the equation

$$
x^{3}-3 x-5=0
$$

correct to three decimals, using the Bisection method.
(b) Find a root of the equation

$$
x \log _{10} x=1.2
$$

correct to three decimals, using the Regula-Falsi method.
(c) Solve the following system of equations by using Jacobi's iteration method :

$$
\begin{aligned}
& 8 x+y+z=8 \\
& 2 x+4 y+z=4 \\
& x+3 y+5 z=5
\end{aligned}
$$

4. (a) Evaluate $\int_{1}^{3} \frac{d x}{1+x}$ by subdividing the interval (1,3) into 8 equal parts, and using Trapezoidal rule.
(b) Solve the following system of equations by using Cramer's rule :

$$
\begin{aligned}
& x_{1}-2 x_{2}-3 x_{3}=3 \\
& x_{1}+x_{2}-x_{3}=5 \\
& 3 x_{1}+2 x_{2}=-4
\end{aligned}
$$

(c) Using the Runge-Kutta method of fourth order, compute $y(0 \cdot 1)$, given that

$$
\begin{equation*}
\frac{d y}{d x}=x y+y^{2}, y(0)=1 \tag{5}
\end{equation*}
$$

5. (a) If one root of the equation
$x^{4}+x^{3}-25 x^{2}+41 x+66=0$ is $(3+i \sqrt{2})$,
then find out the other roots.
5
(b) Find a real root of the equation

$$
x^{3}-4 x-9=0
$$

by using the Secant method.
(c) Using Euler's method, find an approximate value of y corresponding to $x=0 \cdot 1$, given that $\frac{d y}{d x}=x+y+x y$, and $y(0)=1$.

Take $\mathrm{h}=0.05$.
5

